欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教学反思>数学《不等式及其解集》教学反思

数学《不等式及其解集》教学反思

2022-08-16 08:42:45 收藏本文 下载本文

“谁最爱吃香菜”通过精心收集,向本站投稿了16篇数学《不等式及其解集》教学反思,这里小编给大家分享一些数学《不等式及其解集》教学反思,方便大家学习。

数学《不等式及其解集》教学反思

篇1:数学《不等式及其解集》教学反思

本节课在引课时,我设置了丰富的实际情境,比如跷跷板游戏、爆破问题等,研究这些问题,可以使学生体会到现实生活中存在着大量的不等关系,不等式是现实世界中不等关系的一种数学表示形式,它也是刻画现实世界中量与量之间关系的有效模型。

同时,在甄别不等式的过程中,为了加深对不等式意义的理解,引出一元一次不等式的概念。培养学生主动参与、合作交流的意识,同时体会到在现实生活中,不等关系要比相等关系多得多。“补充说明”是为了让学生能完整地理解不等式的定义。

让学生充分发表意见,并通过计算、动手验证、动脑思考,初步体会不等式解的意义以及不等式解与方程解的不同

教学中要突出知识之间的内在联系。不等式与方程一样,都是反映客观事物变化规律及其关系的模型。在教学中,类比已经学过的方程知识,引导学生自己去探索、发现、甄别,从而得出一元一次不等式、不等式的解与解集的意义。

教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果。因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程。这种教学方法让学生在克服困难与障碍的过程中充分发挥自己的观察力、想像力和思维力,使学生真正成为学习的主体。

篇2:数学《不等式及其解集》教学反思

我的本节课学习的人民教育出版社出版的六三制初中数学七年级下册,第九章第一节的'第一课时,主要学习不等式的定义及符号表示,不等式的解、解集、解不等式、一元一次不等式等的定义,不等式解集的表示方法等内容。通过对本节课的教学,谈如下感受:

一、让数学走进学生的生活,提高学生的学习兴趣,提升学生用数学的眼光看生活,用数学的语言表述生活现象的能力。不等关系在学生的实际生活中是随处可见的,让学生把生活中的内容数学化,可以提高学生的兴趣,但同时也会暴露学生认识中的不足:如用数学语言描述不等关系时,学生叙述是往往缺乏必要的限制的条件:有学生说:电脑比电视的价格高,青菜比水果便宜等。而忽略了物品的质量、品牌、品种等不同而带来的价格的不同。所以在教学中要提醒学生用准确的数学语言来描述它们之间的不等关系。

二、类比是本节的重要方法,在本节课中有所体现,但是强调的不够,原因主要要本节课的概念较多,如果把所对应方程的所有概念都加以类比来强化的话,反而会淡化学生对不等式相关定义的理解和掌握,所以在本节课中主要对方程的解与不等式的解进行了类比。而对方程与不等式,一元一次方程与一元一次不等式在教学中是视情况而来对待的,如果学生理解这些概念有问题,就进行类比来教学,如果学生理解不等式的这些概念没问题的话,就可以淡化对这些感念的类比。

三、关于对“≥、≤”的处理,在人教版的教材中,本节课中没有出现这两个符号,本节课的教材中只是把用“>、<、≠”来表示大小关系的式子叫做不等式,二在第二课时学习不等式的性质来才引入“≥,≤”及其含义,我感觉为了体现知识的完备性,在本节课中,把表示大小关系的五个符号一起出现,让学生体会认识,特别是在用数轴表示不等式的解集的时候,学生可以更加清楚地认识“≥、≤、>、<”的区别与联系。

四、引导学生准确用不等式表示数量关系,由于学生在以前已经对数量的大小关系和含数字的不等式有所了解,但还没有接触过含未知数的不等式,在本节教学中,要引导学生用含有未知数的不等式来表示显示生活中的大小关系,特别要注意:“正数、负数、非负数、大、小、多、少、超过、不足”等词在列不等式时对不等号的选用,让学生知道用不等式解决实际问题的方便之处,要求学生准确“译出”不等式。教学中,如果在组织学生讨论的过程中适当地渗透变量的知识,让学生感受其中的函数思想,并引导学生发现不等式的解与方程的解之间的区别会更好些。

以上是我对执教本节课的简单反思,不当之处,敬请各位批评指正。

篇3:《不等式及其解集》教学反思

《不等式及其解集》教学反思

本节课在教学中要突出知识之间的内在联系.不等式与方程一样,都是反映客观事物变化规律及其关系的模型.在教学中,类比已经学过的方程知识,引导学生自己去探索、发现、甄别,从而得出一元一次不等式、不等式的解与解集的意义.

教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果.因此,本课采用启发诱导、实例探究、讲练结合的.教学方法,揭示知识的发生和形成过程.通过类比方法,在整体上把握知识,发展辩证思维能力,通过从事观察、猜测、验证、交流等活动,提高学习学习的兴趣,体会不等式是刻画侠士世界中不等关系的一种有效地数学模型。这种教学方法以“生动探索”为基础,先“引导发现”,后“讲评点拨”,让学生在克服困难与障碍的过程中充分发挥自己的观察力、想像力和思维力,再加上多媒体的运用,使学生真正成为学习的主体。

篇4: 不等式的解集教学反思

不等式的解集教学反思

一、从课堂反思

对于不等关系,学生在前面的数学学习中早就有所接触,本节课的内容是要使学生对不等式有较完整的认识,主要包括这几个方面:不等式的相关定义,根据题意列不等式和不等式在数轴上的表示,为一元一次不等式的学习奠定了基础。在过渡到在数轴上表示不等式时,我首先让学生回顾了在数轴上表示实数,将不等式的范围分解成无数个实数,借此让学生自己体会到在数轴上表示不等式的方法,特别提醒要在数轴上表示不等式应确定实心点或空心圈以及方向。由于这是一个难点,我设计了一组练习题让学生在数轴上表示简单的不等式,引导学生不断地探索、分析和归纳。而本节课的亮点就是一组学习上的不等式:学习压力≠学习动力;学习时间≠考试成绩;做对难题≠考得高分;感觉不好≠考得不好。

二、从学生情况反思

一节课下来内容虽然完成了,但是学生的反映情况却不是很好,我针对每个环节进行了分析:

①用生活中的例子来反映不等的现象,能使学生感受到数学的生活性,但是学生对于能不能相等的情况还比较模糊,要注重题意的理解。

②在得出概念的过程中,有部分同学仍旧没有掌握关键,应该着重强调学生要关注有没有不等号,与是否含有未知数无关。练习中的最后一题是个难点,由于学生没有很好的记住一个数的平方应该是个非负数,仍旧认为是个正数,这应该是与初一时的基础有关。没有考虑到学生的知识水平,我认为以后可以在之前复习一下。

③在列不等式时重点还是应该找寻数量关系中表示不等的词语,让学生多练习为综合应用打下基础。另外学生会产生一定的思维定势,认为学习不等式时的练习应该全都是不等式,因此在教学中要培养学生的审题习惯,尽量减少因审题不清所产生的错误。

④在数轴上表示不等式是本节课效果最差的,主要原因有两个方面,一方面是由于学生的'数轴基础知识欠缺,另一方面是在教学过程中我没有将数轴三要素进行强调,所以使得不等式的表示学得很困难。在巡视过程中发现由于归纳出一般情况的不等式表示,使得学生在表示具体数值的不等式时遗漏了原点和单位长度,这是我在教学中的疏忽。

⑤总结课堂内容是让学生形成一个总体概念的好机会,让学生学会随时总结,随时创新的学习方法。本应该全部让学生自己得出,由于课堂时间不够,一部分由学生得出另一部分由我得出,这样的效果比较差。

⑥最重要的原因是我自身缺乏上课的激情,使得整节课下来气氛都有些压抑。特别是在学生回答出错后,内心已经产生了挫败感,没有及时调整好心态。

在以后的教学中,我将改正缺点,多向其他有经验的教师学习,取长补短,多锻炼自身的心理素质,不断完善自己。

篇5:《不等式及其不等式的解集》教学反思  

《不等式及其不等式的解集》教学反思

本节教学,有以下几点特别值得回味。

1、从生活中来回到生活中去的教学设计

新课标指出:“数学的教学活动必须建立在学生的认知发展水平和已有知识经验基础上。”心理学的研究表明,学习内容和学生生活背景、知识背景越接近,学生自觉接纳知识懂得的程度就越高。导入的恰当、合理会引起学生极大的学习兴趣,对知识的衔接和理顺起到画龙点睛的作用,又对新知识起到设疑、点拔的作用。用学生身边感兴趣的实例过马路、跷跷板体验生活中的不等式,一方面引起学生的参与欲,另一方面也体现了知识拓展的需要。因为这样既可引出一元一次不等式的意义,又让学生产生学习不等式的需求,也使学生对解不等式的方法有了很自然的联想让学生充分感受到学习一元一次不等式的必要性。使学生进一步认识到“数学来源于生活,反过来又为生活服务”,增强学好数学的信心与决定。

2、重视数学思想方法的渗透

数学思想方法是数学的灵魂,知识转化为能力的桥梁。在整节课的教学中都非常重视数学思想方法的渗透。学习不等式时,类比方程、不等式解集的概念,渗透“类比”思想。使学生在已有知识上进行迁移,在主动参与、探索交流中不知不觉学到了新知识。利用数轴求不等式的解集,渗透“数形结合”思想。掌握不等式的解集在数轴上的.表示,利用数轴把解集讲解得非常透彻,使学生充分认识到“数形结合”思想方法的用处。列不等式解决实际问题,渗透“建模”思想,培养学生应用数学的意识。最后的小结,不是流俗的学习内容小结,而是思想方法的小结,它起到了提纲挈领,梳理总结的目的。

3、重视数学的“再创造”

课堂教学改革的宗旨和根本出发点是:改善和促进学生全面、持续、和谐地发展。建构主义理论强调学习的主动性、社会性和情景性,认为学习者不是知识信息的被动吸收者,而是主动积极的建构者。留给学生的作业:完成课外探究题,借助数轴归纳求不等式的解集一般规律。教学时重视了数学的“再创造”,由学生本人把需学的东西自己去发现和创造出来。

学生的学习不再是一种被动地吸收知识,反复练习,强化储存知识的过程,而是通过反复研究、探索、思考、概括,亲身经历“再创造”的探究性学习过程,从而自主获得知识。

总之,教学设计时体现新课程标准的思想和理念,注重知识与能力并重,培养发展学生自主探索的独立思考精神。

篇6:七年级数学《不等式及其解集》说课稿

各位领导

你们好!

今天我要为大家讲的课题是 : 《 不等式及其解集 》 。

首先,我对本节教材进行一些分析:

一、教材分析:

1、教材所处的地位和作用:

本节内容在全书及章节的地位是:《 不等式及其解集 》是 新人教版 初中数学教材第 七 册第 九 章第 1 节内容。 学生已初步体会到生活中的量与量之间的关系,有相等与不等的情形,就是有大小之分…… 在此之前,学生已学习了 等式 基础上,这为过渡到本节的学习起着铺垫作用。

2、教学目标:

根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

(1)知识目标:

了解不等式及一元一次不等式概念。

理解不等式的解、解集,能正确表示不等式的解集。

(2)能力目标:

通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生 互动 ,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。

(3)情感目标:

通过对 《不等式及其解集》 的教学,引导学生从现实生活的经历与体验出发,激发学生对地理问题的兴趣,使学生了解地理知识的功能与价值,形成主动学习的态度,让学生初步认识到地理知识的优越性,同时渗透 安全教育 ;通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

3、重点,难点以及确定的依据:

本课中 不等式相关概念的理解和不等式的解集的表 是重点, 不等式解集的理解 是本课的难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:

二、教学策略(说教法):

(一)教学手段:

如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:

1、“读(看)——议——讲”结合法

2 、读图讨论法

3 、教学过程中坚持启发式教学的原则

基于本节课的特点: 第一节知识性特点 ,应着重采用 自主探讨 的教学方法。

(二)教学方法及其理论依据:

坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据学生的心理发展规律,联系实 际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看图片 、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生根据现实生活的经历和体验及收集到的信息(感性材料)来理解课文中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。

使学生学习对生活有用的数学,学习对终身发展有用的数学的基本理念。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中要积极培养学生学习兴趣和动机,明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

三、学情分析:(说学法):

1、学生特点分析:

中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

2、知识障碍上:

(1)知识掌握上,学生原有的知识 等式 ,许多学生出现知识遗忘,所以应 更学生更过的时间分组预习讨论 。

(2)学生学习本节课的知识障碍。 不等式解集的表示方法

知识,学生不易理解,所以教学中教师应予以简单明白、深入浅出的分析。

3、动机和兴趣上:

明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

最后我来具体谈一谈这一堂课的教学过程:

四、教学程序及设想:

教学程序:

(一)课堂结构: 出示学习目标,预习展示 , 练习反馈 , 课堂自测, 布置作业 五 个部分。

(二)教学简要过程:

1、 出示学习目标,课前预习

出示学习目标,学生观察学习目标,自主预习。

设计意图:有了明确的学习目标才能激发起学生的学习热情,才能充分调动学生学习的积极性。

学生分小组进行自主探究学习,同学之间进行合作交流,教师巡视指导,观察学生的探究方法,并倾听学生之间的探讨。

【设计意图】:本次任务为本节课的核心任务,其目的是通过学生的自主学习,理解本节几个概念,并通过学生的举例回答,从具体的实例中去掌握这几个概念。

2 、预习反馈

让学生自己来讲解,有利于提高学生的语言表达能力,学生用语言来概括这几个概念,培养学生的数学语言表达能力及抽象概念能力。

3 、老师归纳,练习反馈

归纳补充知识点,并进行练习反馈。针对每个知识点设置不同的练习。如

1 ) 、不等式的定义设置 , (判断)下列各式是否为不等式;

(1)-2<5 (2)x+3> 2x (3)4x-2y<0 (4)a-2b

(5)x2-2x+1<0 (6) a+b≠c (7)5m+3=8 (8)x≤-4

2 ) 、 用不等式表示:

⑴ a与1的和是正数;

⑵ y的2倍与1的和小于3;

⑶ y的3倍与x的2倍的和是非负数 ;

⑷ x乘以3的积加上2最多为5、

3 ) 、下列说法正确的是( )

A、 x=3是2x>1的解

B、 x=3是2x>1的唯一解

C、 x=3不是2x>1的解

D、 x=3是2x>1的解集

及认识不等式解集的表示方法有两种:最简形式与在数轴上表示。分组讨论找规律,记口诀。(定界点,定方向)相关题型:

用数轴表示不等式的解集:

(1)x>-2; (2)x≤3; (3)y≤0

找三名同学上台展示。

展示学生的成果,让学生在学习过程中感受学习的乐趣和成功的喜悦,增强学生的学习兴趣。

体会不等式是解决实际问题的有效工具。

4 、课堂自测

检测学习本节课的掌握情况。

5 、布置作业

分层作业。针对学生的学习情况,让每一名同学都 能完成 老师布置的任务,增强成就感及学习数学的兴趣。 A类: 教科书P119,120:1,2,3;B 类: 卷:能力提高作业。

五、反思:

本节教学,有以下几点特别值得回味的地方。

1、从生活中来回到生活中去的教学设计

新课标指出:“数学的教学活动必须建立在学生的认知发展水平和已有知识经验基础上。”心理学的研究表明,学习内容和学生生活背景、知识背景越接近,学生自觉接纳知识懂得的程度就越高。导入的恰当、合理会引起学生极大的学习兴趣,对知识的衔接和理顺起到画龙点睛的作用,又对新知识起到设疑、点拔的作用。用学生身边感兴趣的实例 过马路、跷跷板体验生活中的不等式 ,一方面引起学生的参与欲,另一方面也体现了知识拓展的需要。因为这样既可引出一元一次不等式的意义,又让学生产生学习不等式的需求,也使学生对解不等式 的方法有了很自然的联想 让学生充分感受到学习一元一次不等式的必要性。使学生进一步认识到“数学来源于生活,反过来又为生活服务”,增强学好数学的信心与决定。

2、重视数学思想方法的渗透

数学思想方法是数学的灵魂,知识转化为能力的桥梁。在整节课的教学中都非常重视数学思想方法的渗透。学习不等式时,类比方程、不等式解集的概念,渗透“类比”思想。使学生在已有知识上进行迁移,在主动参与、探索交流中不知不觉学到了新知识。利用数轴求不等式的解集,渗透“数形结合”思想。掌握不等式的解集 在数轴上的表示 ,利用数轴把解集 讲解得非常透彻,使学生充分认识到“数形结合”思想方法的用处。列不等式解决实际问题,渗透“建模”思想,培养学生应用数学的意识。最后的小结,不是流俗的学习内容小结,而是思想方法的小结,它起到了提纲挈领,梳理总结的目的。

3、重视数学的“再创造”

课堂教学改革的宗旨和根本出发点是:改善和促进学生全面、持续、和谐地发展。建构主义理论强调学习的主动性、社会性和情景性,认为学习者不是知识信息的被动吸收者,而是主动积极的建构者。留给学生的作业:完成课外探究题,借助数轴归纳求不等式的解集一般规律。教学时重视了数学的“再创造”,由学生本人把需学的东西自己去发现和创造出来。学生的学习不再是一种被动地吸收知识,反复练习,强化储存知识的过程,而是通过反复研究、探索、思考、概括,亲身经历“再创造”的探究性学习过程,从而自主获得知识。

总之,教学设计时体现新课程标准的思想和理念,注重知识与能力并重,培养发展学生自主探索的独立思考精神。

篇7:9.1.1不等式及其解集

课题:

【学习目标】:

㈠知识与技能:

1.使学生感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义;

2.让学生自发地寻找不等式的解,会在数轴上正确地表示出不等式的解集;

3.能够根据题意准确迅速地列出相应的不等式。

㈡过程与方法:.

1.通过汽车行驶过a地这一实例的研究,使学生体会到数学来源于生活,又服务于生活,培养学生“学数学、用数学”的意识;

2.经历由具体实例建立不等模型的过程,探究不等式的解与解集的不同意义的过程,渗透数形结合的思想。

㈢情感、态度、价值观:

1.通过对不等式、不等式的解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;

2.让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域中去。

3.培养学生类比的思想方法、数形结合的思想。

【教学重点与难点】

1.教学重点:不等式、一元一次不等式、不等式解与解集的意义;在数轴上正确地表示出不等式的解集;

2.教学难点:不等式解集的意义,根据题意列出相应的不等式。

【学法与教法设计】

1.学生学法:观察发现、讨论研究、总结归纳;

2.教师教法:启发引导、分析、类比。

【课时与课型】龙活虎

1.课型:新授课;    2.课时:第一课时。

【教学准备】

计算机、自制cai课件、实物投影仪、三角板等。

【师生互动活动设计】

教师创设情境引入,学生交流探讨;师生共同归纳;教师示范画图,课件交互式练习。

【教学设计】

〖创设情境——从生活走向数学〗

[多媒体展示]“五·一黄金周”快要到了,芜湖市某两个商场为了促销商品,推行以下促销方案:①甲商场:购物不超过50元者,不优惠;超过50元的,超过部分折优惠。②乙商场:购物不超过100元者,不优惠;超过100元的,超过部分九折优惠。亲爱的同学,如果五·一期间,你去购物,选择到哪个商场,才比较合算呢?

(以上教学内容是向学生设疑,激发学生探索问题、研究问题的积极性,可以让学生讨论一会儿)

教师:要想正确地解决这个问题,我们大家就要学习第九章《不等式和不等式组》,学完本章的内容后,我相信,聪明的你们一定都会作出正确的选择,真正地做到既经济又实惠。

首先,我们来共同学习本章的第一节课——9.1.1节《不等式及其解集》

〖新课学习〗

[多媒体展示课题及学习目标]:9.1.1不等式及其解集

学习目标:

1.能感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式和意义;

2.会寻找不等式的解,会在数轴上正确地表示出不等式的解集;

3.能够根据题意准确迅速地列出相应的不等式。

一、引入新课

[多媒体展示一段动画]:引例:一辆匀速行驶的汽车在11:20距离a地50千米,要在12:00之前驶过a地,车速应满足什么条件?

(让学生讨论发言后,师生共同分析:)

设车速是x千米/小时,

(1)从时间上看,汽车要在12:00之前驶过a地,则以这个速度行驶50千米所用的时间不到 小时,即

<                      ①

(2)从路程上看,汽车要在12:00之前驶过a地,则以这个速度行驶 小时的路程要超过50千米,即

x>50                   ②

二、探究新知

㈠不等式、一元一次不等式的概念

1.不等式

请同学们观察上面的两个式子,式子左右两边的大小关系是怎样的? 左右两边相等吗?

在学生充分发表自己意见的基础上,师生共同归纳得出:

用“>”或“<”号表示大小关系的式子叫做不等式;

用“≠”表示不等关系的式子也是不等式。

2.课堂练习——看谁做得又快又准

判断下列式子中哪些是不等式,是不等式的请在题后的括号内划“√”,不是的请划“×”

(1)3> 2      (     ) (2)2a+1> 0   (     )   (3)a+b=b+a  (     )

(4)x< 2x+1   (     )     (5)x=2x-5    (     ) (6)2x+4x< 3x+1 (     )          (7)15≠7+9  (     )

上面的不等式中,有些不含未知数,有些含有未知数,大家把(2)、(4)、(6)式与(5)式类比,(5)式是一个一元一次方程,能不能给(2)、(4)、(6)式也起个名字呢?

3.一元一次不等式

(学生讨论后,师生共同归纳)

含有一个未知数, 未知数的次数是1的不等式,叫做一元一次不等式.

注意 : < 中,x在分母位置上,它不是一元一次不等式

4.小组交流:说说生活中的不等关系.

(学生讨论发言后, 多媒体展示几个生活中的不等关系的例子)

㈡不等式的解、不等式的解集

1.现在,我们再来看汽车行驶问题(多媒体展示)

问题1:要使汽车在12:00之前驶过a地,车速应满足什么条件?

问题2:车速可以是78千米/小时吗?75千米/小时呢? 72千米/小时呢?

问题3:我们曾经学过“使方程两边相等的未知数的值就是方程的解”,那么我们可以把使不等式成立的未知数的值叫做什么呢?

(师生共同归纳)使不等式成立的未知数的值叫做不等式的解。

2.课堂练习二——动一动脑,动一动手,你一定能算得对。

判断下列数中哪些是不等式 x>50的解

76, 73, 79, 80, 74.9, 75.1, 90, 60

(学生做完后,师问):你还能找出这个不等式的其他的解吗?这个不等式有多少个解?你从中发现了什么规律?

(学生讨论后,师生共同总结):当x>75时,不等式 x>50总成立;而当x<75或x=75时,不等式 x>50不成立,这就是说,任何一个大于75的数都是不等式 x>50的解,这样的解有无数个。因此,x>75表示了能使不等式 x>50成立的x的取值范围,叫做不等式 x>50的解的集合,简称解集。

我们再回到前面的问题,经过刚才的分析,可以知道,要使汽车在12:00之前驶过a地,车速必须大于75千米/小时。

3.不等式的解集

一个含有未知数的不等式的所有的解,组成了这个不等式的解集。

4.在数轴上表示不等式的解集;

注意:在表示75的点上画空心圆圈,表示不包括这一点.

(教师板演示范)

5.课堂练习三——动一动脑,动一动手,你一定能算得对。

判断下列数中哪些是不等式x+3>6的解? 哪些不是?

-4, -2.5,  0,  1,  2.5,  3,  3.2,  4.8,  8,  12

6.解不等式

求不等式的解集的过程叫做解不等式。

7.课堂练习四——看谁算得最快最准。

直接想出不等式的解集,并在数轴上表示出不等式的解集:

(1) x+3>6;        (2)2x<8;    (3)x-2>0

解:(1)x>3;         (2)x<4;    (3)x>2。

㈢列不等式

1.例用不等式表示:

(1)x与1的和是正数;      (2)的与的的差是负数;

(3)的2倍与1的和大于3;(4)的一半与4的差小于的3倍.

解:(1)x+1>0;         (2)+b<0;

(3)2+1>3;      (4)-4<3;

2.课堂练习五——看谁最列得又快又准。

用不等式表示:

(1)是正数;          (2)是负数;

(3)与5的和小于7;  (4)与2的差大于-1;

(5)的4倍大于8;      (6)的一半小于3.

答案;(1)>0;        (2)<0;   (3)+5>0;

(4)-2>-1;(5)4>8;  (6)<3

三、总结、扩展

学生小结,师生共同完善:

本节课的重点内容:1.了解不等式和一元一次不等式和意义;

2.会寻找不等式的解,会在数轴上正确地表示出不等式的解集;

3.能够根据题意准确迅速地列出相应的不等式。

四、布置作业

1.必做题:p134习题9.1第1、2题.

2.选做题:p134习题9.1第3题

附:板书设计:

篇8:不等式及其解集教学计划

教学目标

知识技能

1.了解不等式及一元一次不等式概念。

2.理解不等式的解、解集,能正确表示不等式的解集。

数学思考

通过类比等式的对应知识,探索不等式的概念和解,体会不等式与等式的异同,初步掌握类比的思想方法。

解决问题

1.经历把实际问题抽象为不等式的过程,能够列出不等关系式。

2.初步体会不等式(组)是刻画现实世界中不等关系的一种有效数学模型,培养学生的建模意识。

情感态度

通过对不等式概念及其解集等有关概念的探索,培养学生的知识迁移能力和建模意识,加强同学之间的使用与交流。

重点

不等式相关概念的理解和不等式的解集的表示。

难点

不等式解集的理解。

教学流程安排

活动流程图

活动内容和目的

活动一:

感知不等关系,了解不等式的概念。

通过实例,让学生认识到不等关系在生活中的存在,通过问题的解答,让学生了解不等式的概念,体会不等式是解决实际问题的有效工具。

活动二:

通过类比方程,继续探索出不等式的解、解集及其表示方法。

通过解决上个环节的问题,得出不等式的解,再引导学生观察解的特点,探索出解集的两种表示方法(符号表示、数轴表示),并且培养学生用估算方法求解集的技能。

活动三:

继续探索,归纳出一元一次不等式的意义。

针对所学的不等式,让学生归纳出特点,得到一元一次不等式的概念,并对概念进行辨析。

活动四:

拓展探究,深化新知。

运用本节所学的知识,解决实际问题,使学生经历将实际问题转化为数学问题,再加以解决的过程,实现对所学知识的巩固和深化。

活动五:

小结、布置作业

让学生通过自我反思和互相质疑提问,归纳总结本节课的主要内容,交流在概念、解及解集学习中的心得和体会,不断积累数学活动经验,教师应主动参与学生小结中,作好引导工作,布置好作业,并作及时反馈。

教学过程设计

问题与情境

师生行为

设计意图

[活动1]

1、(多媒体展示情境)

小强准备随父母乘车去武当山春游。

⑴在车上看到儿童买票所需的测身高标识线。

问题:若x表示一名儿童的'身高,那么

①x满足______时,他可免票。

②x满足______时,他该买全票。

⑵已知襄樊与武当山的距离为150千米,他们上午10点钟从襄樊出发,汽车匀速行驶。

①若该车计划中午12点准时到达武当山,车速应满足什么条件?

设车速为x千米/小时,可列式子:______________。

②若该车实际上在中午12点之前已到达武当山,车速应满足什么条件?

设车速为x千米/小时,可列式子:______________。

2、归纳不等式的概念和意义。

3、巩固练习

用不等式表示:

⑴a是正数;⑵a是负数;⑶a与5的和小于7;⑷a与2的差大于-1;

⑸a的4倍大于8;

⑹a的一半小于3。

学生回答①这两个由实际生活情境设置的问题,应非常容易.问题②相对①难度加大了,难在题意中的条件不象上面那样直接明了,并且可从距离和时间两个角度来分析、解决问题,而七年级学生恰恰缺乏阅读分析题意、多维度思考解决问题的能力,所以采用小组讨论交流的形式解决问题②

学生讨论角度估计大都集中在距离这一角度,教师可深入小组讨论中,认真听听同学们的思路,应鼓励学生多发表意见,并适当点拨,直到得出两种不等式。

此次活动中,教师应重点关注:讨论要有足够的时间和空间,学生在小组讨论交流时,是否敢于发表自己的想法。

再给出不等式概念:

像前面式子一样用“>”或“<”号表示大小关系的式子,叫着不等式。

教师可要求学生举出一些表示大小的式子,学生举出的不等式中,可能会有一些不含未知数的,如5>3等。教师此时应总结:不等式中可含有未知数,也可不含未知数。

教师根据学生举例给出表示不等关系的第三种符号“≠”,并强调:像前面式子一样用“≠”表示不等关系的式子也是不等式。

巩固练习是让学生用不等式来刻画题中6个简单的不等关系。学生得出答案并不难,所以该环节让学生独立完成、互相评价,教师可深入到学生的解题过程中,观察指导学生的解题思路,倾听学生的评价。

问题1在课本中起导入新课作用,考虑学生实际情况(分析应用题能力尚欠缺)和题目难度,所以设置问题串,降低难度。这样编排教材我认为更能体现知识呈现的序列性,从易到难,让学生“列不等式”能力实现螺旋上升。

问题3作用仅仅起巩固上面所学的知识,所以采用书中的一组习题,让学生独立完成,进一步培养学生列不等式能力。

采用学生熟悉的生活情境作为导入内容,然后层层推进,步步设问,环环相扣,直至推出不等式的概念及概念理解中应注意的地方。这样实现了:让学生从已有的数学经验出发,从生活中建构数学模型,为后面利用“不等式”这一模型解决生活中实际问题作好铺垫,体现了数学生活化、生活

篇9:不等式的解集

教学建议

一、知识结构

二、重点、难点分析

本节教学的重点是不等式的解集的概念及在数轴上表示不等式的解集的方法.难点为不等式的解集的概念.

1.不等式的解与方程的解的意义的异同点

相同点:定义方式相同(使方程成立的未知数的值,叫做方程的解);解的表示方法也相同.

不同点:解的个数不同,一般地,一个不等式有无数多个解,而一个方程只有一个或几个解,例如, 能使不等式 成立,那么 是不等式的一个解,类似地 等也能使不等式 成立,它们都是不等式 的解,事实上,当 取大于 的数时,不等式 都成立,所以不等式 有无数多个解.

2.不等式的解与解集的区别与联系

不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了解集,解集中包括了每一个解.

注意:不等式的解集必须满足两个条件:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使不等式成立.

3.不等式解集的表示方法

(1)用不等式表示

一般地,一个含未知数的不等式有无数多个解,其解集是某个范围,这个范围可用一个最简单的不等式表示出来,例如,不等式 的解集是 .

(2)用数轴表示

如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圆.

如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圈.

注意:在数轴上,右边的点表示的数总比左边的点表示的数大,所以在数轴上表示不等式的解集时应牢记:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.

一、素质教育目标

(一)知识教学点

1.使学生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集.

2.知道不等式的“解集”与方程“解”的不同点.

(二)能力训练点

通过教学,使学生能够正确地在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.

(三)德育渗透点

通过讲解不等式的“解集”与方程“解”的关系,向学生渗透对立统一的辩证观点.

(四)美育渗透点

通过本节课的学习,让学生了解不等式的解集可利用图形来表达,渗透数形结合的数学美.

二、学法引导

1.教学方法:类比法、引导发现法、实践法.

2.学生学法:明确不等式的解与解集的区别和联系,并能熟练地用数轴表示不等式的解集,在数轴上表示不等式的解集时,要特别注意:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.

三、重点・难点・疑点及解决办法

(一)重点

篇10:不等式的解集

2.利用数轴表示不等式的解集.

(二)难点

正确理解不等式解集的概念.

(三)疑点

弄不清不等式的解集与方程的解的区别、联系.

(四)解决办法

弄清楚不等式的解与解集的概念.

四、课时安排

一课时.

五、教具学具准备

投影仪或电脑、自制胶片、直尺.

六、师生互动活动设计

(一)明确目标

本节课重点学习不等式的解集,解不等式的概念并会用数轴表示不等式的解集.

(二)整体感知

通过枚举法来形象直观地推出不等式的解集,再给出不等式解集的概念,从而更准确地让学生掌握该概念.再通过师生的互动学习用数轴表示不等式的解集,从而为今后求不等式组的解集打下良好的基础.

(三)教学过程

1.创设情境,复习引入

(1)根据不等式的基本性质,把下列不等式化成 或 的形式.

① ②

(2)当 取下列数值时,不等式 是否成立?

l,0,2,-2.5,-4,3.5,4,4.5,3.

学生活动:独立思考并说出答案:(1)① ② .(2)当 取1,0,2,-2.5,-4时,不等式 成立;当 取3.5,4,4.5,3时,不等式 不成立.

大家知道,当 取1,2,0,-2.5,-4时,不等式 成立.同方程类似,我们就说1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3这些使不等式 不成立的数就不是不等式 的解.

对于不等式 ,除了上述解外,还有没有解?解的个数是多少?将它们在数轴上表示出来,观察它们的分布有什么规律?

学生活动:思考讨论,尝试得出答案,指名板演如下:

【教法说明】启发学生用试验方法,结合数轴直观研究,把已说出的不等式 的解2,0,1,-2.5,-4用“实心圆点”表示,把不是 的解的'数值3.5,4,4.5,3用“空心圆圈”表示,好像是“挖去了”.

师生归纳:观察数轴可知,用“实心圆点”表示的数都落在3的左侧,3和3右侧的数都用空心圆圈表示,从而我们推断,小于3的每一个数都是不等式 的解,而大于或等于3的任何一个数都不是 的解.可以看出,不等式 有无限多个解,这无限多个解既包括小于3的正整数、正小数、又包括0、负整数、负小数;把不等式 的无限多个解集中起来,就得到 的解的集会,简称不等式 的解集.

2.探索新知,讲授新课

(1)不等式的解集

一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集.

①以方程 为例,说出一元一次方程的解的情况.

②不等式 的解的个数是多少?能一一说出吗?

(2)解不等式

求不等式的解集的过程,叫做解不等式.

解方程 求出的是方程的解,而解不等式 求出的则是不等式的解集,为什么?

学生活动:观察思考,指名回答.

教师归纳:正是因为一元一次方程只有惟一解,所以可以直接求出.例如 的解就是 ,而不等式 的解有无限多个,无法一一列举出来,因而只能用不等式 或 揭示这些解的共同属性,也就是求出不等式的解集.实际上,求某个不等式的解集就是运用不等式的基本性质,把原不等式变形为 或 的形式, 或 就是原不式的解集,例如 的解集是 ,同理, 的解集是 .

【教法说明】学生对一元一次方程的解印象较深,而不等式与方程的相同点较多,因而易将“不等式的解集”与“方程的解”混为一谈,这里设置上述问题,目的是使学生弄清“不等式的解集”与“方程的解”的关系.

(3)在数轴上表示不等式的解集

篇11:不等式的解集

A. B. C. D.

②不等式 的正整数解为( )

A.1,2 B.1,2,3 C.1 D.2

③用不等式表示图中的解集,正确的是( )

A. B. C. D.

④用数轴表示不等式的解集 正确的是( )

学生活动:分析思考,说出答案.(教师给予纠正或肯定)

【教法说明】此题以抢答形式茁现,更能激发学生探索知识的热情.

(四)总结、扩展

学生小结,教师完善:

1.  本节重点:

(1)了解不等式的解集的概念.

(2)会在数轴上表示不等式的解集.

2.注意事项:

弄清“ ・ ”还是“ °”,是“左边部分”还是“右边部分”.

七、布置作业

必做题:P65  A组 3.(1)(2)(3)(4)

八、板书设计

6.2  不等式的解集

一、1.不等式的解集:一般地,一个含有未知数的不等式的所有的解组成这个不等式的解的集合,简称不等式的解集.

2.解不等式:求不等式解的过程

二、在数轴上表示不等式的解集

1. 2.

三、注意:(1)“ ・ ”与“ °”;(2)“左边部分”与“右边部分”.

篇12:不等式的解集

分析:因为未知数的取值小于3,而数轴上小于3的数都在3的左边,所以就用数轴上表示3的点的左边部分来表示解集 .注意未知数 的取值不能为3,所以在数轴上表示3的点的位置上画空心圆圈,表示不包括3这一点,表示如下:

②表示 的解集:( )

学生活动:独立思考,指名板演并说出分析过程.

分析:因为未知数的取值可以为-2或大于-2的数,而数轴上大于-2的数都在-2右边,所以就用数钢上表示-2的点和它的右边部分来表示.如下图所示:

注意问题:在数轴上表示-2的点的位置上,应画实心圆心,表示包括这一点.

【教法说明】利用数轴表示不等式解的解集,增强了解集的直观性,使学生形象地看到不等式的解有无限多个,这是数形结合的具体体现.教学时,要特别讲清“实心圆点”与“空心圆圈”的不同用法,还要反复提醒学生弄清到底是“左边部分”还是“右边部分”,这也是学好本节内容的关键.

3.尝试反馈,巩固知识

(1)不等式的解集 与 有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.

(2)在数轴上表示下列不等式的解集.

① ② ③ ④

(3)指出不等式 的解集,并在数轴上表示出来.

师生活动:首先学生在练习本上完成,然后教师抽查,最后与出示投影的正确答案进行对比.

【教法说明】教学时,应强调2.(4)题的正确表示为:

我们已经能够在数轴上准确地表示出不等式的解集,反之若给出数轴上的某部分数集,还要会写出与之对应的不等式的解集来.

4.变式训练,培养能力

(1)用不等式表示图中所示的解集.

【教法说明】强调“・ ”“ °”在使用、表示上的区别.

(2)单项选择:

篇13:不等式及其解集教学计划

问题与情境

师生行为

设计意图

[活动2]

问题1.(幻灯片展示)

①判断下列数中哪些满足不等式2x/3>50:

76、73、79、80、74.9、75.1、90、60

②满足不等式的未知数的值还有吗?若有,还有多少?请举出2—3例。

③.上问中的不等式的解有什么共同特点?若有,怎么表示?

④.②中答案在数轴上怎么表示?

⑤.通过前面的学习,你对求不等式解集有什么方法?

问题2:(幻灯片展示)直接想出不等式的解集,并在数轴上表示出来:⑴x+3>6⑵2x<8⑶x-2>0

教师出示问题,学生独立思考并解答。

教师引导学生共同评价,得出答案。教师在①②问完成后,类比方程,给出不等式的解的概念:

使不等式成立的未知数的值叫做不等式的解。

在②问完成后,强调不等式与方程的区别:不等式的解不止一个。

本次活动教师应重点关注:学生是否积极尝试探究?在探究②问时,是否按“观察特点——猜想结论——验证猜想”的思路展开,避免盲目性。

③问教师根据学生思考情况,作适当地引导、讲解,找出特点并表示,教学时可先用举例法,再用性质描述法,最后再给出不等式解集定义:一个含有未知数的不等式的所有解,组成这个不等式的解集。

④问教师引导学生完成。

⑤问可先让学生先行讨论,教师深入小组,仔细倾听学生意见,参与学生讨论,最后师生共同探究。

本次活动教师应重点关注:

⑴学生讨论是否有时效性、针对性。

⑵学生是否积极展示自己想法,叙述是否有条理,语言是否准确。

⑶学生是否能熟练用数轴表示解集。

通过简单代值运算,使每名学生都动起来,边代、边算、边答、边交流,调动学生的学习兴趣,为每位学生都创造在数学活动中获取成功的体验机会,并培养学生观察能力和数感。

本环节主要任务是突出重点和突破难点。通过对学生已有的数学知识进行拓展延伸,解释不等式的解,然后递进到不等式的解集,最后发展到解集的两种表述方法,这样设计活动,符合知识发生发展形成过程。

虽然解不等式不是本节课教学目标,但问题1的第⑤问设计意图是想在一元一次方程的解与同它对应的一元一次不等式的解之间建立一种联系,这样设计充分发挥学习心理学中正向迁移的作用,借助已有的方程知识,可以为学习不等式提供一条学习之路。

[活动3]

1、让学生找出下列不等式的特点:

x<1.1x>1.4

2x>150x+3>6

2x<8x-2>0

辨析:

下列哪些不等式是一元一次不等式

①x+2y>1②x2+2>3

③2/x>1④x/2+1

学生总结不等式特点,教师再让学生类比一元一次方程命名,得到一元一次不等式概念。

含有一个未知数、未知数次数是1的不等式叫做一元一次不等式。

通过探索一元一次不等式的概念,让学生体会类比思想。

问题与情境

师生行为

设计意图

[活动4]

1、让学生找出易拉罐中不等式关系,并表示出来。

2、某班同学经调查发现,1个易拉罐瓶可卖0.1元,1名山区贫困生一年生活费用大约是500元。该班同学今年计划资助两名山区贫困生一年生活费用,他们已集资了450元,不足部分准备靠回收易拉罐所得。那么他们一年至少要回收多少个易拉罐?

学生独立探索,互动交流。

教师对问题2可采取灵活处理的方式,可让学生合作完成、分段完成。

通过对学生熟悉的生活背景进行处理,让学生体会数学生活化,能将实际问题转化为数学问题加以解决,培养学生应用意识。

[活动5]

问题:你对本节知识内容有何认识?

布置作业:P140.T2

学生独立思考、自我反思与小组合作交流、互相提问相结合,教师适时点拔总结。

本次活动中教师应重点关注:⑴不同学生总结知识程度;⑵小组合作情况;⑶学生梳理知识能力。

学生课后完成,教师批改总结。

教师应关注:

⑴不同层次的学生对知识的理解掌握程度并系统分析。

⑵对反馈的

篇14:不等式及其解集教学计划

通过学习自我反思、小组交流、引导学生自主完成对本节重要知识技能和思想方法的小结,让学生养成“反思”的好习惯,并培养学生语言表述能力。

及时了解学生的学习效果,并据此调整教学安排。

篇15:《不等式的解集》说课稿

各位评委老师大家好!我说课的题目是华东师大版初中数学七年级(下)第八章第二节《解一元一次不等式》的第一节《不等式的解集》,下面我从教材分析等方面对本课的设计进行说明。

一、教材分析

本节课研究的是不等式的解集和不等式解集在数轴上的表示。这之前学生已经初步学习了不等式和不等式解,这部分在本章中不但有承上启下的作用,而且为今后学习函数的应用奠定了数形结合的基础,因此它在教材中处于非常重要的位置。一元一次不等式的解集是前面一元一次方程解的扩展,两者存在区别与联系。在数轴上表示不等式的解集,是学生学习数轴之后,又一次接触到图形与数量的对应关系,同时为今后函数的学习提供了方法和依据。

二、目标分析

根据学生已有的认知基础和本科教材的'地位,由于数学教学不仅是知识的教学,技能的训练,更能重视能力的培养及情感教育,因此确定教学目标1,2,3。

即:

1、知识目标:了解不等式解集的意义和不等式的解集在数轴上的表示。

2、能力目标:建立图形与数量的对应关系,能在数轴上表示不等式的解集,渗透数形结合的数学思想。

3、情感目标:引导学生在独立思考的基础上,参与问题的讨论,激发学生主动获取知识的兴趣增强学生学习的信心。

教学重点:一元一次不等式的解集和表示。

教学难点:一元一次不等式解集的意义和不等式解集在数轴上的表示。

教学难点突破办法: 通过观察,分析、概括过程,使学生对不等式的解集有了初步的理解,然后通过数轴直观地表示出不等式的解集,从而加深了学生对不等式的解集的理解。

三、教法分析

为创设宽松民主的学习气氛,激发学生思维的主动性,顺利完成教学目标根据学生特点和学生的实际情况采用引导发现法,计算机辅助教学。将学生个体的自我反馈,小组间的合作交流,与师生间的信息及时联系起来,形成多层次多方面的合作交流,共同发现知识,获取知识。学生知识掌握过程离不开学生自身的智力活动,因此,在教学中,突出引导学生观察,分析,以旧探新,猜测论证等方法,揭示数学问题,并采用个人思考,分组讨论,汇报结果等多种形式,使每个学生都参与到学习中来,学生在获得知识的过程中悟出道理,得出结论,增强学习数学的自信心,

四、学法分析

1.学生要深刻思考,把实际问题转化为数学模型,养成认真思考的好习惯。

2.合作类推法:学习过程中学生共同讨论,并用类比推理的方法学习。

五、教学过程

1、创设情景,提出问题

通过实际应用问题让学生在解决的过程中先找出几个符合题意的解,然后发现问题,这样,既复习了不等式,又给新课做好了铺垫,由此可以发现,不等式的解有许多个,他们组成一个集合,称为不等式的解集,这样既符合认知规律,又能找到最佳切入点,使学生产生探索的欲望,从而引出不等式的解集。

2、探究新知

通过讨论、交流、归纳得到:大于3的每个数都是不等式x+2>5的解,而小于3的每一个数都不是不等式x+2>5的解,因此不等式x+25的解有无限多个,它们组成集合,称为一元不等式x+25的解集。即表示为x3。

由实例概括出不等式的解集以及解不等式的概念:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集;求不等式的解集过程,叫做解不等式。

我们知道解不等式不能只求个别解,而应求它的解集.一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x>3.那么如何在数轴上直观地表示不等式x+2>5的解集x>3呢? 不等式解集x>3,在数轴上可以直观地表示出来。如图8.2.1

如果某个不等式x≤-2,也可在数轴上直观地表示出来,如图8.2.2

说明:8.2.1在表示范表演的点画空心圆圈,表不包括这一点,表示大时就往右拐;图8.2.2在表示-2的点画黑点表示包括这一点,表示小时往左拐。

3、讲解补充例题,

例1:判断:

①x=2是不等式4x<9的一个解.( )

② x=2是不等式4x<9的解集.( )

例2、将下列不等式的解集在数轴上表示出来:

(1)x<2

(2)x≥-2

(设计意图:例1是让学生理解不等式的解与不等式的解集。联系与区别,例2揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)

4、巩固练习:课本44页练习2,3题

5、归纳总结,

结合板书,引导学生自我总结,重点知识和学习方法,达到掌握重点,顺理成章的目的。

6、作业:课本49页习题1,2题

设计意图:促进学生及时地复习课文,巩固和强化所学知识,提高解决问题的能力。

篇16:不等式的解集说课稿

教材分析:

上节课认识了不等式,知道了什么叫不等式和不等式的解。本节主要学习不等式的解集,这是学好利用不等式解决实际问题的关键,同时要求学生会用数 轴表示不等式的解集,使学生感受到数形结合的作用。并且本课也通过让学生经历实验、观察、分析、概括过程,自主探索不等式的解集等概念,培学生的思维能力。在情感态度、价值观方面要培养学生与他人合作学习的习惯。

教学重点:理解不等式的解集的含义,明确不等式的解是在某个范围内的所有解。

教学难点:对不等式的解集含义的理解。

教学难点突破办法:

通过实验、观察,分析、概括过程,使学生对不等式的解集有了初步的理解,然后通过数轴直观地表示出不等式的解集,从而加深了学生对不等式的解集的理解。

教学方法:

1、采用复习法查缺补漏,引导发现法培养学生类比推理能力,尝试指导法逐步培养学生独立思考能力及语言表达能力。充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识。

2、让学生充分发表自己的见解,给学生一定的时间和空间自主探究每一个问题,而不是急于告诉学生结论。

3、尊重学生的个体差异,注意分层教学,满足学生多样化的学习需要。

学习方法:

1、学生要深刻思考,把实际问题转化为数学模型,养成认真思考的好习惯。

2、合作类推法:学习过程中学生共同讨论,并用类比推理的方法学习。

教学步骤设计如下:

(一)创设问题情境,引入新课:

实验:将如下重量的砝码分别放入天平的左边。

请大家仔细观察,哪些砝码放入天平左边后能使天平向左边倾斜?如果砝码重x克,要使x+2>5,即:天平左边放入x克砝码后使天平向左边倾斜。那么这样的x取应取什么数?这样的数是有限个还是无限个?

学生活动:1、让学生观察实验,寻找数量关系回答问题;2、让学生采取小组合作的学习方式。

(二)讲授新课

通过实验、讨论、交流、归纳得到:大于心不甘的每个数都是不等式x+2>5的解,而小于3的每一个数都不是不等式x+2>5的解,因此不等式x+2>5的解有无限多个,它们组成集合,称为一元不等式x+2>5的解集。即表示为x>3.

由实例概括出不等式的解集以及解不等式的概念:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集;求不等式的解集过程,叫做解不等式。

我们知道解不等式不能只求个别解,而应求它的解集。一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x>3.那么如何在数轴上直观地表示不等式x+2>5的解集x>3呢?

不等式解集x>3,在数轴上可以直观地表示出来。如图8.2.1

如果某个不等式x≤-2,也可在数轴上直观地表示出来,如图8.2.2

说明:8.2.1在表示范表演的点画空心圆圈,表不包括这一点,表示大时就往右拐;图8.2.2在表示-2的点画黑点表示包括这一点,表示小时不向左拐。

(三)知识拓展

将数轴上x的范围用不等式来表示:

(四)尝试反馈:

课本第44页“练习”第1、2题。

(五)归纳小结:

这节课主要学习了不等式的解集的有关概念,并会用数轴表示不等式的解集。

(六)布置作业:

【数学《不等式及其解集》教学反思】相关文章:

1.《不等式及其解集》教学反思

2.解不等式组教学反思

3.不等式的解集说课稿

4.小学数学教学反思集

5.初中数学教学反思集

6.《解比例》六年级数学教学反思

7.解比例教学反思

8.数学不等式课件

9.高三数学不等式、推理与证明训练试题集

10.《解简易方程》教学反思

下载word文档
《数学《不等式及其解集》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部