欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>四年级数学教案人教版

四年级数学教案人教版

2024-01-16 08:06:09 收藏本文 下载本文

“紫玉米”通过精心收集,向本站投稿了14篇四年级数学教案人教版,下面是小编为大家整理后的四年级数学教案人教版,供大家参考借鉴,希望可以帮助您。

四年级数学教案人教版

篇1:四年级人教版数学教案

——教学目的:1.在实际情境中,理解路程、时间与速度之间的关系。2.根据路程、时间与速度的关系,解决生活中简单的问题。3.树立生活中处处有数学的思想。

——教学重点:理解路程、时间与速度之间的关系。

——教学难点:理解路程、时间与速度之间的关系。

——教学准备:主题图。

——教学方法:谈话法;情境教学法。

一、谈话导入

师:在生活中,我们经常会遇到一些数学问题,这些问题和我们的日常生活息息相关,我们一起来看看吧。(出示主题图)

二 、探索路程、时间与速度之间的关系

1.学生思考:要想知道谁跑得快,要比较什么?你有什么办法?

2.小组交流,明确:要想知道谁跑得快,就要看看同一时间里谁跑得远,谁就快。这个同一时间在这里就是1小时,那么拖拉机1小时跑了120÷2=60(千米)而面包车1小时跑了210÷3=70(千米)60<70,因此,面包车跑得快。

3.教师引导学生了解单位时间即为:1时、1分、1秒。在单位时间内所行驶的路程叫做速度。本题中,拖拉机的速度是60千米/时,而面包车的速度为70千米/时。因此,面包车的速度快。

联系生活实际,使学生明白要想知道谁跑得快,不是看谁行驶的路程多,而是要看统一时间内谁跑得远,建立单位时间的表象。

4.让学生根据这一情境得出路程、时间、速度三者的关系。速度=路程÷时间

5.看一看。

出示生活中常见的数据,拓展学生对日常生活中速度的认识,也可以把学生课前收集到的数据进行交流。

——通过实例,给予学生充分的自主探索的空间,真正明确了路程、时间、速度这三者的关系。培养学生收集、处理信息的能力和获取知识的能力。

三、巩固练习

1.完成“试一试”第一题。让学生看图,根据情境解答。进一步巩固路程、时间、速度三者的关系。

2.完成“试一试”第2题。

三个算式结合具体情境去体会、思考、交流、汇报。让学生进一步理清三者关系。

四、总结谈话——这节课,你有什么收获呢?

第4课时:路程、时间与速度

教学目的:1.根据路程、时间与速度的关系,解决生活中简单的问题。2.树立生活中处处有数学的思想。

教学重点难点:根据路程、时间与速度的关系,解决生活中简单的问题。

一、复习导入

上节课,我们了解了路程、时间与速度之间的关系,谁来说说这三者之间存在什么样的关系?

让学生理清三者关系,为下面的练习打基础。

二、综合练习

1.完成“练一练”第一题。

2. 完成“练一练”第二题。根据情境图列式计算。

3. 完成“练一练”第三题。根据第1个算式写出第2、3个算式的得数,寻找其中的规律。

4. 完成“练一练”第四题。列式计算后,与自己的同桌再出一组这样的题并解答。

在解决问题过程中,培养学生策略意识。让学生通过观察得出结果、发现规律,培养学生丰富的想像力,促进学生思维的发展。让学生自己编题,是对所学知识的再次巩固和延伸,这会大大激发学生学习热情。

三、实践应用

——完成“练一练”第五题。

看线段图解答,然后提问:15分、35分分别在什么位置。让学生在解决问题中体会路程、时间、速度三者的关系。

四、拓展练习——指导学生完成数学自主学习相关内容。

四年级人教版数学教案

篇2:四年级数学教案人教版

教学目标:

1、结合问题情境,理解和掌握小数进、退位的加减法。

2、能运用本课所学的知识,解决简单的实际问题。

教学重难点:

理解、掌握小数进退位的加减法。

教学准备:

课件、星星。

二、说教法与学法

数学家波利亚说过:学习任何知识的途径,都是自己去发现。学习学习知识是接受的过程更是发现、探索的过程。的教法是引导学生自己去发现、主动去探索。本节课紧密联系学生的生活实际,从学生的生活经验和已有知识出发,让学生在生活情境中发现数学问题,运用所学知识探索解决问题的策略,让学生体验到数学算法的多样化,发展其作出决策的能力。并通过小组讨论,把所学的知识点进行归纳总结。体现了“小课堂,大社会”的课堂教学理念。

三、说教学流程

(一)创设情境,旧知铺垫

1.师:今天数学游乐园开张了。老师准备带大家一起去游一游。只要大家答对门口的几道题,就可以免费进去了,你们有信心吗?

2.课件出示情境:

0.24+0.1 0.82-0.32 1.54+2.3 9.88-4.32

售票员阿姨:“只要小朋友能准确地计算出得数,不管用什么方法都可以。

3.师引导:可以口算,可以列竖式计算、还可以请教别人,等等。

4.学生计算后、汇报结果。

(华裔诺贝尔物理学获奖者崔琦先生说过:“喜欢和好奇心比什么都重要。”针对学生的喜欢和好奇心,以游乐园的情境贯穿于各个教学环节,激发了学生学习的兴趣。本环节目的是激活学生学习本课所需的知识,选择不同算法,关注学生的个别差异,特别给予后进生再次学习的机会。)

(二)提出问题

1、问题情境

师:大家计算得真准确!我们可以进去数学游乐园喽!你们瞧,游乐园里真乐闹啊!大象伯伯在那里给大家量体重,我们去看看!哦,有三位小朋友量出来的体重是……(课件出示游乐园情境图)

笑笑 38千克

淘气 45.2千克

丁丁 33.4千克

2、大象伯伯要考考你们:你能不能根据图上的信息,提出一个问题呢?

3、学生提出问题,教师从中选择出本节课将解决的问题:(退位减法)

(1)淘气比丁丁重多少千克?

(2)丁丁比笑笑轻多少千克?

(从学生熟悉的生活情境中提出问题,让学生充分感受到生活中处处有数学,数学与我们的生活紧密相联。在潜移默化中培养学生用数学的角度观察生活中的事物。)

三、探索算法

(1)淘气比丁丁重多少千克?

1、学生列出算式:45.2-33.4=2、师:请小朋友们开动脑筋,把得数算出来。

2、学生独立探究算法。

3、全班交流:生1:我算出得数是11.8。

(师追问:你是怎么算出来的呢?)

生1:我先算出452-334=118,那么45.2-33.4就等于11.8。

师:很好,不过这种算法的前提是小数的位数相同。

生2:我是把这道题想成钱来算的。我先从45.2元里面拿出33元……

师:你能把生活经验用在这里解决算术问题真不错。

生3:我能用列竖式的方法来算。

师:你的算法很特别,能不能上台来跟同学们说说你是怎么算的。

生3:(一边板书,一边讲)我把先45.2写在上面,33.4写在下面,要注意小数点对齐,然后2减4不够减,找前一位借1,变成12-4=8,……最后算出来的得数是11.8

师:谢谢你。

师:你们觉得哪一种方法计算起来更方便呢?

(列竖式)

师:那好,我们就用列竖式的方法计算第二个问题。

(新知识只有通过学生的主动参与,自行探索,才能转化为学生的知识,才能培养学生的创造性思维能力。本环节让学生从具体的问题出发,主动参与,探究小数退位减法的竖式计算方法,体现了学生学习的主体性,而且有效的保持学生学习兴趣。在师生交流过程中,学生感受到数学算法的多样化,并且学会优化选择。)

(2)丁丁比笑笑轻多少千克?

(课件出示问题及智慧爷爷说的话“小数末尾添上‘0’或去掉‘0’,小数大小不变。”)

1、学生独立计算,教师巡视指导。

2、请2位学生板演。

3、引导学生评价。

(课件出示情境)

4、师:数学游乐园里还有个小朋友晶晶还不明白,我们一起来帮帮他。

5、小组讨论:列竖式计算要注意什么?不够减时怎么办?如果碰到整数怎么办?

6、分组讨论,并做好记录。

7、汇报交流。(强调智慧爷爷说的话)

8、师小结:计算小数退位减法时,小数点要对齐,不够减时要向前一位借一。小数末尾添上“0”或去掉“0”,小数大小不变。

(教师通过课件进行板书。)

(通过小组讨论,促进生生互动,发展学生合作交流的能力和归纳、概括数学知识的能力。)

四、巩固和应用

“有奖解答”

1、师:小朋友们都学好了本领,接来老师要带大家去参加游乐园的“有奖解答”活动,看谁获得的奖品最多?

2、P16第一题。

(课件出示)

(1)看谁算得最准确。

8.25

+1.55

-

7.3

-2.25

-

10

- 2.45

-

教师着重引导小数进位加法的计算问题。

小结:计算小数进位加法时,小数点要对齐,满十要向前一位进一。

3、P16第二题。

新学期开学了,笑笑到商店买了1个书包和1个文具盒,笑笑一共花了多少元?

名称 单价/元

书包 32.50

文具盒 7.60

4、分发奖品。(星星——贴在光荣榜)

(在“有奖解答”的具体情境中,学生既巩固新知,同时又引出了小数进位加法的计算问题。给予学生自主学习的空间) 第九文书网 wwW.9Word.Com

五、总 结 回 顾

1、师:我们今天的游园活动到这里就结束了,你愿意把今天的收获和大象伯伯分享吗?

2、学生谈收获。

3、师总结:这就是我们所今天学习的——小数进、退位的加减法。相信以后遇到小数加减法的问题,应该难不倒你们了。

(让学生分享收获,体现了 “反思”的思想,使学生学会总结,深化认识,把所学知识变成自己内在的东西

篇3:人教版四年级数学教案

四年级数学上册《小数的意义》教案

教学目标:

1、经历观察、测量、猜想等学习活动,感受、体验小数产生于生活,感受生活中处处都存在小数;

2、理解小数的意义,能说出小数各部分的名称,掌握小数的读、写方法,并正确能读写小数;

3、在合作与交流中的过程中,感受数学学习的乐趣。

教学教法:

教学方法是教学过程中师生双方为完成目标而采取的活动方式的组合。根据本课教学内容的特点和学生的思维特点,我选择了尝试法、引导发现法、等方法的优化组合。引导他们去发现问题、分析问题、解决问题、获取知识,从而达到训练思维、培养能力的目的。小数的含义是属概念教学,较为抽象、凝炼,根据学生对概念的认知,一般遵循:感知——表象——抽象概括——形成概念的这一规律。

1、从生活中了解小数,明确要用小数表示的必要性。

2、从已有的生活经验中,理解、抽象小数的意义。

3、通过观察、测量,让学生充分感受、体验小数产生于生活,从而使学生感受生活中处处都存在小数 。

4、了解小数在生活中的普遍存在及广泛运用,体验数学在身边,感受数学学习的价值和乐趣。

教学学法:

1、学会通过观察、测量、归纳,可以发现生活中处处都存在小数 。

2、引导学生自主探究,培养他们用已有知识解决新问题的能力。

3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。

教学过程:

一、创设情景 导入新课

创设“5.1”假期情景 ,使本课内容与学生的现实生活经念相吻合

1、在假期里你买了什么物品?花了多少钱?

2、老师买了一本书,同学们猜一猜要多少元?

从同学们的回答中归纳出不能用整元数表示的这种数,要用小数表示。引入课题。

这样的设计,旨在把枯燥的数学知识与学生的生活实际相联系,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入的学习状态,为主动探究新知识聚集动力。

二、明确目标 探索新知

同学们都知道小数就在我们的生活中存在,那么同学们想了解小数的什么?

我预设学生的提问(预设)

1、小数是怎么来的。(怎么产生的)

2、什么叫小数?(小数的意义)

3、小数是怎么读的,怎么写的?

根据学生提的问题,师生分析问题

1、师生小结小数的意义

(1)象“0.1、0.3、0.9”这些小数叫1位小数。(分母是10的分数,可以写成1位小数。1位小数表示十分之几。)

(2)象“0.01、0.04、0.18”这些小数叫2位小数。(分母是100的分数,可以写成2位小数。2位小数表示百分之几。)

(3)象“0.001、0.015、0.219”这些小数叫3位小数。(分母是1000的分数,可以写成3位小数。3位小数表示千分之几。)

2、学习小数的写法

三、巩固新知

1、练习“考考你”;(练一练)第1题

2、用米做单位测量同桌的高度;

3、菜市场买菜统计表。

【把小数在实际生活中的运用结合起来,使学生体验教学就在身边,感受数学学习的乐趣】

四、小结

1、了解小数的历史。(小资料)

【了解小数的历史,激发学生的爱国热情。】

2、学了小数这节课,能谈谈你知道了些什么吗?

五、作业布置

1、从生活中记录一些小数,明天同学之间相互交流;

2、完成《作业本》

布置实践性的作业,使学生把小数在实际生活中的运用结合起来,体验教学就在身边,感受数学学习的乐趣。

四年级数学上册《栽蒜苗》教案

一、复习旧知、引出新知。

1.学生复习条形统计图

师:同学们前几天我们栽了蒜苗,还记录了它在15天内生长情况的数据,昨天,大家把自己栽种蒜苗的数据进行了整理,制成条形统计图,举在手里,展示一下。

展示一学生的条形统计图

生汇报图中数据

2.提出问题,学生探究作图

师:如果我们还想了解它从第3天到第15天整个的生长变化的情况,该怎么画呢?老师这有几种统计图,请你仔细观察,看哪一种更合适。(师出示条形统计图、扇形统计图、折线统计图)生任选其一。

能不能在你作的条形统计图上作一些修改或补充,把它变成这种统计图呢?

学生在小组内先讨论,再在图上试一试。

学生作图后展示,汇报作了哪些修改,表示什么意思?

3.生成新知,揭示课题

师抓住学生将条形上的点连线,对比评价,选择优秀的作品,用多媒体演示由条形统计图演变为折线统计图(描点,连线)的过程

提醒同学们:变成真正的折线统计图还要把原有的条形统计图擦掉

揭示课题:折线统计图

二、读折线统计图,体会特点

1. 读点

师:图中的点表示什么呢?

生说点的意义,(课件显示并标数量)

2.读趋势,

师:同学们都读出了点所表示的数量(板书数量),由点连成的线呢?

生说表示蒜苗从矮长到高的生长趋势。

读局部趋势,从第几天到第几天长得快,从第几天到第几天长得慢(板书趋势)

3.估计

根据这一趋势请你估计蒜苗第10天大约长到多少厘米?

4.预测

预测第20天大约长到多少厘米,并说说你的想法。

三、独立制图。

师:我们会读折线统计图了,那你会画折线统计图吗?怎么画呢?

出示笑笑蒜苗生长情况统计表,你能将它制成折线统计图么?

学生独立绘制笑笑的蒜苗生长情况折线图

汇报评价

说说图中的信息

对比自己与笑笑的蒜苗生长趋势,哪些地方相同,哪些地方不同

四、运用延伸

1.出示 北京地区5月新增病人的统计图

(1)从上图中你能说说“非典”新增病人的变化趋势吗?

(2)你能与同学说说产生这种变化趋势的原因吗?

2.出示小玲家室内气温的变化统计图

(1)小玲每隔( )时测量一次气温

(2)这一天从8:00到16:00的气温从总体上说是如何变化的?

(3)请你再提出一个数学问题,并尝试解答。

3、出示百货大楼一年销售冰箱的总数量统计图

根据趋势,作出决策

师:如果你是销售经理,根据今年销售趋势,明年你有什么打算?大约进多少?为什么?

五、课外拓展

下课后收集生活中的折线统计图,下节课交流

四年级数学上册《正负数》教案

教材内容:

教材的地位和作用这部分内容是学生已经认识了自然数,并初步认识了分数和小数的基础上,结合熟悉的生活情境,初步认识负数。通过教学,一方面可以适当拓宽学生对数的认识,激发进一步学习的愿望;另一方面也为学生在第三学段进一步理解有理数的意义以及进行有理数运算打下基础。

教学目标:

①收集生活素材来渗透负数的概念。引导学生初步理解正、负数可以表示两种相反意义的量。

②能正确地读写正数和负数,知道0既不是正数也不是负数。

③初步学会用负数表示一些日常生活中的实际问题。对正数、0、负数之间的大小有个直观的认识。

④感受数学在实际生活中的作用,培养自主探求新知的良好品质及实际应用能力。

学者分析:

本班有学生62人,大部分属于中上水平,学生已经具有一定的认知水平,他们好奇心强,具有创新和知识的迁移能力。

教学策略:

(1)通过丰富多彩的现实生活情景,帮助学生了解负数的意义。负数的产生和发展源于生活的需要。因此,教学本节课应注意为孩子们提供众多丰富的生活中的正负数现象,既让学生引起探究的兴趣,又让学生感受到数学就在生活中,体验到数学的无穷魅力和价值。

(2)借助直观手段理解相反的分界点与“0”的关系。本课的难点在于学生不容易理解负数、正数与0的关系。如何突破难点,直观教学手段是关键。这其中温度计的观察和海拔图的使用,可以有效地帮助学生逐步从直观到半直观再过渡到比较抽象地认识到它们三者之间的关系。

(3)开展有层次的探究活动,引领学生主动建构,发展学生的数学思维能力。

教学过程:

一、复习

1、复印存折明细记录贴入,观察支出(—),存入(+),这一栏的数各表示什么意义?

“+”表示( )

“_” 表示( )

他们表示的意思是

{填相同还是相反}

2、上网收索今天的天气预报,记录哈尔滨,和福州的气温数据。

哈尔滨( )表示—--------------------------------------------

福州( )表示—--------------------------------------------

它们是以( )度为基准,例如:+16°表示--------------+16°表示--------------

—16°与—16°表示两个( )意义的量。

哪个地方的气温高,哪个地方的气温低?

比较:+16°( )—16°{填>,<或=}

3、带有“+”的数有-------------叫----数

带有“-”的数有------------- 叫----数

+16读作--------------------—16读作

4、思考:0是正数还是负数?

5、收集生活中不同用法的负数,并说说表示什么?

二、讲授新课

1、检查

(1)+500表示存入500,—500表示支出500,它们表示的意思是(相 反 ){填相同还是相反}

(2)打开天气预报图

哈尔滨( —9°~~~—19° )表示—----今天气温零下9度到零下19度之间,气侯寒冷,下雪,结冰。------

福州( 11°~~~~~6° )表示—----今天气温零上11度到零上6度之间,气侯较温暖 ,看不见下雪,结冰的现象。------

它们是以( 0 )度为基准,例如:+16°表示--零上16度-----—16°表示----零下16度----

+16°与—16°表示两个(相反 )意义的量。

哪个地方的气温高,哪个地方的气温低?

补充:认识数轴表示

—16 0 +16

(3)生汇报

带有“+”的数有------------- 叫正数 注:也可省略“+”号

带有“-”的数有------------- 叫负数 注:不可省略“—”号

+16读作-正十六-------—16读作—负十六--------

(4)0是正数还是负数?把你的思考与小组交流,讨论。然后小组汇报。

总结:0既不是正数也不是负数,它是正负数的分界点。

(5)、举生活中正负数的例子

例如:盈利与亏选,上车人数与下车人数,地上成数与地下层数,水位升高与下降,相反方向的距离等。

学完这节学生还有疑难问题吗?,提出,由同学,小组解决,最后困难由老师及时解答。

篇4:人教版四年级数学教案

教学目标:

1、在实际情景中,理解路程、时间与速度之间的关系

2、根据路程、时间与速度的关系,解决生活中简单的问题

3、感受数学知识与生活的密切联系,树立生活中处处有数学的思想

教学重点:

根据路程、时间与速度的关系解决生活中的实际问题。

教学过程:

一、创设情境,激发学生的学习兴趣。

出示刘翔跑步图片

师:同学们,图中跑步的是谁呀?你们认识吗?(刘翔)

师:对了,这就是我们中国的飞人刘翔。

师:同学们,刘翔跑得怎么样?(很快)这里的快指的是刘翔的什么快?(速度) (出示成绩表)

师:从成绩单中,他们都跑的这110米是什么意思?(出示:路程)

那么他们的12.91秒,13.18 秒,13.20秒这些是什么?(出示:时间) 同学们,通过这个表格来看,为什么是刘翔赢了呢?(他用的时间最少) 师:(出示并观察这两个表格),那么通过刚才的两次比较,你发现速度的快慢与什么有关系?(时间、路程有关系)到底什么是速度?速度与路程和时间又有什

么关系?今天这节课就一起来研究(板书:路程 时间 与速度)

二、师生互动、探究新知。

1、师:刚才呀,咱们在比快慢的时候知道了如果路程相等的时候,谁用的时间少,谁就快。如果路程跟时间都不相同呢?怎么比快慢?下面请看这样一组信息: 小卡车2小时行驶了120千米,大客车3小时行驶了210千米,哪辆车跑的比较快?

(1)师:你们能从图中了解到哪些数学信息?

哪辆车跑的快些?你们能试着解决吗?

(2)你可以通过计算,也可以借着画线段图的方法来分析数量关系,解决问题,清楚了吗?做完后可以和同桌交流,开始

(3)汇报各自的解决办法。(指名板演)

(4)同学们比的都不错,那么刚才老师在巡视的过程中,发现同学们都没有用线段图,其实呀,画线段图可以帮助我们正确的理解数量关系,解决问题,那么怎么画线段图呢?你们想不想学习呀?

师:好,请看。我们先画一段线段,用它表示小卡车行驶的路程,小卡车行驶了多少千米呀?(在黑板上画下表示120千米的线段)

然后我们再画一条线段,用来表示大客车行驶的路程,那么在画的时候要注意左端对齐,那么同学们,跟这条线段相比,应该画多长呀?

强调:应该按照一定的比例适当的长些。

(黑板上画了210千米长的线段)

那么大客车行使了多少千米?(210千米 标上)

师:小卡车的120千米是多少时间行驶的?(生反馈:2小时)

师:那么怎么样在线段图上表示它1小时行驶的路程?

师:恩,在一半的位置来画,就是把线段怎么样?

师:平均的分成两半

(教师在黑板上分)那么这里的每一份表示小卡车1时行驶的路程,我们这样来表示。那么怎么样在线段图上表示大客车1时行驶的路程呢?

(在黑板上比划了不同的3段)可以吗?怎么分?一起说。

师:把它平均分成3份,同样,这是每一份表示大客车1时行驶的路程,同样,我们取这一段来表示。

(教师在黑板上分)那么从线段图上来看,哪辆车1时行驶的路程长? 师:大客车行驶的路程长。大客车就跑的快。

2、讲解速度的读法、写法

师:在刚才的比较过程中,我们无论是通过计算,还是通过画线段图,都是比较两辆车多长时间行驶的路程?

师:对了,他们每小时或1时行驶的路程就是他们的速度,那么像这样小卡车1小时行使了60千米,也就是小卡车的速度是60千米/时,

(板书60千米/时)这就是我们今天要学习的用来表示速度的单位,谁来说一说这个单位是是由哪些我们学过的单位组成的?

师:对,速度的单位是由路程单位和时间单位组成的,中间用斜线隔开。读作每60千米每时。(指名读)

你知道每小时60千米表示什么吗?

那么你能不能这样来表示出大客车的速度?在练习本上写一写(指名板演)

3、经历公式形成的过程。

师:很好,刚才呀,咱们求出了小卡车和大客车的速度,那么结合这个算式和线段图来看一看,速度和路程还有时间有什么样的关系?和你的伙伴交流交流。好,开始。

(汇报,结合120÷2=60(千米)来讲解。板书:速度=路程÷时间)让学生读一读。

4、理解单位时间,理解速度的意义。

同学们,那么通过这个关系式来看,如果要想求出速度的话,我们需要知道什么?(路程与时间)知道了相对应的路程和时间,我们就可以求出速度了。好,请同学们在下面小声的读题,然后口答下列各题中物体的速度,开始。 师:请写出下面各物体的速度

①一列火车2时行驶180千米,这列火车的速度是_________

②自行车3分钟行驶600米,这辆自行车的速度是_________

③一名运动员8秒跑了80米,这名运动员的速度是________

师:我们一起来看下这三个速度,它们分别是这些物体在多长时间内行驶的路程?

师:其实他们每时,每分,每秒行驶的路程就是他们的速度,我们把这样的像一时、一分、一秒…这样的时间叫做单位时间。你对速度是怎样理解的? 物体在单位时间(一时,一分,一秒…)内所行驶的路程,叫做速度。自己练习说一说。

5、经历公式形成的过程。

现在咱们知道了什么是速度,也知道了速度等于路程除以时间,那么同学们,时间该怎么求?路程又该怎么求呢?我们一起结合下面的问题来试一试。 (出示题目1)你能从中获得什么数学信息?

那么根据这些信息,你能解决这个问题吗?

你能说一说求路程的关系式是怎么样的?

时间=路程÷速度

路程=时间×速度

师:同学们太厉害了,通过这个关系式我们可以看出要想求出速度,就必须知道相对应的路程和? (时间)

师:那么求时间和求路程也是一样的,必须要知道相对应的另两个量,你看,路

程,时间和速度的关系是多么的密切呀。

三、实际运用

1、感受生活中的速度

师:速度不仅在咱们的课堂中有,在咱们的生活中也是无处不在的,咱们一起到生活中感受一下速度,好吗?读一读,感受一下。出示看一看图片 让学生看一看读一读。

2、解决问题

小红和小明约好到少年宫玩,如果她俩同时从家里出发,谁会先到达少年宫呢?

(出示 只有距离没有其它条件的题目)

师:那么同学们,你说如果看路程的话,能不能确定谁先到少年宫? 师:还需要知道什么?

人教版四年级数学教案

篇5:人教版四年级上数学教案

本节课的内容是有括号(主要是有中括号)的四则运算顺序,是在二年级学习的基础上学习的,对有关的四则运算顺序(包括有小括号的两步运算)有了初步的掌握。但从我这节课之前让学生试做《学案》第5页的有关练习所反馈的情况来看,发觉孩子们对四则运算的顺序(特别是含有三步计算的运算顺序)并没掌握,所以我在复习这一环节里,分三种情况复习了有关的运算顺序。在此基础上,再通过一式多变的形式,由浅入深地,引导孩子们合作探究有括号的四则运算的顺序,让孩子们亲身经历知识的生成过程,孩子成了学习的真正主人。由于比较详细地复习了,所以孩子们课堂上的反馈还是比较好的:学习气氛比较活跃,积极性比较高,练习正确率比较高。

不足之处:

由于复习时间用得过长,导致练习的时间稍微少了些,练习的形式、题形等不够多样。这有待我在今后的教学中不断改进和提高。

篇6:四年级下册人教版数学教案

教学目标:

知识与技能

1.使学生认识计数单位“万”“十万”“百万”“千万”和“亿”,知道亿是个大数;知道亿以内各个计数单位的名称和相邻两个单位之间的关系。

2.理解、掌握我国记数习惯,每四个数位为一级。

3.掌握数位顺序,能够根据数级初步地读出亿以内的数。

过程与方法:

通过情境创设、小组合作学习等形式,使学生获得正确读数一些基本方法的成功体验;培养学生分析、综合的能力,培养学生在生活中主动探究的意识。

情感、态度与价值观

体验数学与现实生活的密切关系,激发学生学习数学的兴趣,增强学生学好数学的信心。

教学重点:

记数单位以及各记数单位间的关系。

教学难点:

数级、数位、记数单位的区别以及“位值”的理解。

教学准备:

课件、计算器等。

教学过程:

一、创设情境 生成问题

1、课件导入

同学们,在日常生活中,我们经常接触到很多大数。(出示投影)

1994年首都北京的人口有一千零五十一万。

光的速度是每秒二十万千米。

地球离月亮大约有三十八万四千四百千米。

在日常生活和生产中,还经常用到比万大的数,今天咱们一起来认识一些大数。(板书课题)

2、介绍主题图(出示主题图)

我国进行了第五次全国人口普查。让我们一起来看看这次普查中这六个省市、自治区的人口数据。(课件出示:我国人口)

谁能尝试读出上面这些数?

指名读数,并让学生说说他是怎样读的?

二、探究交流 解决问题

出示例1:13819000这个数有多大呢?

1.计数器操作,认识计数单位。

在这个计数器上,你发现了什么?

用计数器数数:拨上一千,然后一千一千地数,一直数到九千,再拨上一千。

问题:九千再加上一千是多少?千位满十要怎样?

认识十个一千就是一万。(板书“万”。)

让学生在计数器上一万一万地数,一直数到九万,再加一万,是多少?认识十个一万是十万,板书“十万”。用同样方法,完成一百万、一千万、一亿的认识,分别板书:百万、千万、亿。

2.小组讨论学习计数单位间的关系。

大家知道万、十万、百万、千万、亿是什么吗?你们发现这些计数单位之间有什么关系?

3.认识数位和数位顺序表

(1)学习数位。将13819000按数位顺序写出。说出每个数字所占的数位名称、计数单位,表示有多少个这样的计数单位。

(2)同桌学生互相说一说其他数位上的数各表示多少。

(3)学习“数级”。介绍我国计数的四位分级法。

为了便于读亿以内的数,我国沿用了四位一级的计数规律,即从右起每四位为一级.个、十、百、千是个级,表示多少“个”;万、十万、百万、千万是万级,表示多少个“万”.

三、巩固应用 内化提高内化提高

完成第4页“做一做”第1题。

同桌之间互相说数,一个一、一万一万地说,另一个拨。

四、回顾整理 反思提升

让学生谈谈学习体会、收获。

四年级下册人教版数学教案

篇7:四年级人教版下册数学教案

1、探索乘法的结合律要以解决问题策略的多样化为依托。 下面请老师们见教材19页探索部分,教材是通过比较2个学生的不同解题方法,发现规律的。这里要说明的一点是:我们所说的解决问题策略的多样化是指群体策略的多样化,通过比较不同学生的不同策略,来发现其中的规律,而不是要求每个学生都必须会用不同的策略解决同一个问题。

2、猜测、举例、验证必不可少。 与学习加法的结合律和交换律一样,乘法的结合律和交换律也要经过猜测、举例、验证的过程。这一点,前面已经说过,在教材的呈现形式上已有所渗透。

3、运算律的字母描述形式,可以尝试放手。 在教学第一单元时,由于学生是第一次接触用字母表示加法运算律,教师需要进行适当的引导,但是本学习本单元时,由于学生已经有了用字母表式规律的经验,所以教师可尝试着放手,让学生自己去摸索,去表达。

4、关注学生已有的经验和认知基础,找准迁移点。 学生有了第一单元学习加法结合律和加法交换律的经验,再来学习乘法结合律和乘法交换律,应该说难度不大。因此,教师要尽量放手,发挥其主观能动性,让学生自主地获取知识。 在组织教学方面,由于本单元教材的呈现形式及教法渗透方面,与上单元很相似,因此,可参照第一单元的教学流程去组织学习活动(比如说,猜想——举例——验证)

5、运算律的探索、理解、运用是本单元的教学重点,规律的记忆要在理解的基础上进行。 数学课程标准对运算律的教学提出的目标是“探索和理解运算律,能应用运算律进行一些简便运算”从字面意义上看,标准对我们的要求,是学会探索方法,理解定律的意义。当然作为基础知识与技 能的教学要求,也即规律的记忆,这是必要的,但要在理解的基础上进行。

6、重视简便计算在现实生活中的灵活应用,有利于提高学生解决实际问题的能力。

篇8:人教版四年级上册数学教案

教学目标

知识与技能:

1.使学生掌握比较亿以内数的大小的方法。

2.能正确地比较几个数的大小。

过程与方法:

1.培养学生知识迁移和归纳概括的能力。

2.学生经历亿以内数的大小比较方法的形成过程,体验比较类推的方法。

情感、态度与价值观:

通过比较实际生活中的一些数据体验数学知识与实际生活之间的联系,培养学生自主学习的能力,提高学生学习的兴趣。

教学重难点

教学重点:掌握亿以内数的大小比较方法。

教学难点:能正确地比较多个数的大小。

教学工具

四年级

教学过程

一、复习旧知,知识铺垫

(一)复习亿以内数的认识、万以内数的大小比较。

1.填空。

(1) 80是( )位数,最高位是( )位;它与71的位数 ( ) (相同或不相同)。

(2) 101010是( )位数,最高位是( )位;356000左起第二位是( )位,表示( )个( )。

(3) 346000左起第二位是( )位,表示( )个( )。

2.比较下面每组中两个数的大小。

356 ○ 1280 2010 ○ 1020

5693 ○ 5297 8064 ○ 8046

3.引导学生口答:万以内数比较大小的方法是怎样的?

(1)先看有几位数,位数多的那个数就大。

(2)如果位数相同,那就看左起第一位,如果左起第一位相同,就看第二位,依此类推。

二、合作探究,教学新知

(一)创设情境,导入新课

1.我国是世界四大文明古国之一,幅圆辽阔,山河壮丽,气象万千,物产丰富,历史文化悠久。五千年的人文创造和天开万物造就的自然景观为我们留下了景象骄人、数量繁多的名胜古迹,创造了辉煌的文化艺术,招徕各国游客,因此每年都有数以万计的有课来到我国旅游。下面我们来看一下这几个国家来我国旅游的具体人数。

师出示课件几个国家到我国旅游的人数。(单位:人)

美国:2116100 日本:3658200 泰国:608000

俄罗斯:2536300 印度:606500 韩国:4185400

2.正确地读出上面各数。

3.板书课题:亿以内数的大小比较

4.学生同桌两人合作,在这6个国家中随意选取两个国家的人数,比较它们的大小,一人出问题,一人来比较,解答。

自学提示:试着比较一下数的大小。

5.总结比较大小的方法

归纳比较方法:位数多的数就大。(板书)

(二)初步研究新知

1.两个亿以内不同位数的数大小比较。

216110○608000

师: 哪一个数大?小组内讨论交流。

小结:位数不同的两个数,位数多的那个数就__。

2.两个亿以内相同位数的数的大小比较。

608000和606500

师:位数相同情况怎样比较?小组内讨论交流。

学生小组汇报:都是六位数,就比最高位,它们最高位上都是6,就比下一位万位,万位都是0,就比下一位千位,千位上一个是8,一个是6,所以608000大于606500。

找多个学生说。

让学生说出比较的方法:

位数相同的两个数,从最高位比起,最高位上的数大的那个数就大,如果最高位上的数相同,就比较下一个数位上的数。

3.多个数大小比较

要求:根据到我国旅游人数多少,将这6个国家按从大到小的顺序排列。

学生小组内尝试。

小组内交流各自比较方法。

引导比较:分类----七位数相比较---六位数相比较

三、巩固练习

师:同学们,我们再接再厉,用最好的成绩来结束今天的学习,好吗?那下面我们进行课堂检测,看谁完成的又快又正确!

(1)比较每组两个数的大小

92504○103600 50140 ○ 61340

28906 ○28890 620300 ○ 307300

(2)按照从小到大顺序排列大小

50500 500500 55000 40005

四、教师课堂小结:

师:同学们,经过今天学习,大家有什么收获?

与我们学过的万以内数比大小的方法相比,你发现什么?

师生归纳总结方法:

位数不同的两个数,位数多的那个数就___。

位数相同的两个数,从最高为比起,最高位上的数大的那个数就___,如果最高位上的数相同,就比较下一个数位上的数。

五、布置作业:评测练习

板书

亿以内数的认识

位数不同两个数的大小比较 位数多的数就大

位数相同的两个数大小比较 从最高位比起,最高位上的数大的那个数就大,如果最高位上的数相同,就比较下一个数位上的数。

多个数大小比较 先分级 再分类 比较

篇9:人教版四年级上册数学教案

教学目标

1 知识与技能:

认识亿以上数的认识,学会亿以上数的读法和写法。掌握把整亿的数改写成以亿为单位的数。

2 过程与方法:

经历亿以上数的读写过程,体验类推、迁移的思想与方法。

3 情感态度与价值观:

通过对大数的认识,扩大学生的知识视野,体会数学与生活的联系,提高学习数学的兴趣。

教学重难点

1 教学重点:

掌握亿以上数的读、写方法。使学生掌握改写、省略的方法。

2 教学难点:

掌握中间有0的大数的读写方法。能够把用“万”作单位的数的改写方法迁移到改写用“亿”作单位的数。

教学工具

多媒体设备

教学过程

1 谈话引入

在上课之前,我们先来玩个游戏——数字魔法,有一个数非常难读,你们想试一试吗?

出示:0。

生回答后,师说:这么难的数也会读,真不简单!接下来它要变了,请仔细看:3004,谁会读?真了不起!请继续看,变变变,507000,这个数好大,你们会吗?(生回答)

这么难的数还难不倒大家,看好了, 80409000,这下不会了吧?

也会呀,你读吧!你们真聪明!读得又对又快,一定知道它们的读法,谁来说一说亿以内的数如何读。

看来同学们对亿以内数的读法掌握得很好,在我们生活中,还经常会遇到比一亿更大的数,这节课让我们一起走近它们,认识它们。

(板书课题:亿以上数的认识)

2 新知探究

(一)亿以上数的读法

1、读一读下面画横线的数。

2、试读出下面各数。

3、怎样读亿以内的数?

先读万级,再读个级;万级的数,要按照个级的数的读法来读,再在后面加上一个“万”字;每级末尾不管有几个0,都不读,其他数位上有一个或连续有几个0,都只读一个零。

4、读出下面各数。

9200000000 26705000000 508040003000 300700400

(三)亿以上数的写法

1、写出下面横线上的数。

2、试写出下面各数。

3、亿以上数的写法。

先写万级,再写个级;哪个数为上一个单位也没有,就在那个数位上写0。

4、试写出下面各数。

二十五亿 写作: 2500000000

四百九十亿六十万 写作: 49000600000

五千零四亿零七百万 写作: 500407000000

5、读写比较。

读法与写法有什么相同与不同?

相同点:从高级起,按级读数,写数。

不同点:读数时,每级末尾不管有几个0都不读,其他位上有一个或连续有几个0,都只读一个零。

写数时,哪一位上一个单位也没有就在那一位上写“0”。

3 巩固提升

刚才同学们的表现非常出色,有一只机灵的小猴知道了,它有些不服气,想考考大家,你们愿意接受挑战吗?接下来我们一起进入闯关练习。

第一关:学以致用

1.我国平均每月生产和丢弃的一次性筷子大约是3700500000双。读作:(三十七亿零五十万 )。

2.四亿零五百九十万四千二百。 这个数写作:( 405904200 )。

第二关:火眼金睛

1. 6008007200中的每一个0都不读。 ( 错误 )

2.由三十、三十万、三十亿组成的数300030030。 ( 错误 )

第三关:精挑细选

1. 用7个十亿、8个千万、5个万和4个十组成的数写作( D )

A、780050040 B、708050040

C、708005040 D、7080050040

2. 下面各数中,所有的0都不读的是( C )

A、906307000 B、1080060000

C、5207500 D、5883000600

课后小结

(一)学生总结

这节课学习了什么?你有什么收获?(小组说--组内总结--组间交流)

(二)教师总结

今天,我们通过自己的努力,学会了这么多知识,老师真为你们骄傲!同时我们还发现很多数学知识都是相互联系、相互贯通的。我们在学习时要做到举一反三,运用旧知识来学到更多的新知识。

板书

亿以上数的认识

1、亿以内数的读法、写法

2、亿以上数的读法、写法

篇10:人教版四年级上册数学教案

教学目标:

1.借助学生熟悉的事物,从不同角度对1亿进行感受,发展学生的数感。

2.经历课题研究、数学建模的简单过程,初步获得一些解决问题的策略和方法,发展学生解决问题的能力。

3.在研究过程中,充分发挥学生的创造性,体验数学与日常生活的密切关系,认识到许多实际问题可以借助数学方法来解决,体会数学的应用价值;培养愿意与他人合作,与人交流,共同解决问题的良好品质。

教学重难点

教学重点:经历课题研究、数学建模的简单过程,培养对1亿大小的感性认识。

教学难点:体会和感受大数在日常生活中的应用,进一步培养数感。

教学工具

教学准备:课件、一包打印纸、一把大米、尺子、天平、计算器

教学过程

一、复习引入

1、填一填:一个一个的数,10个一是( )

10个10是( );10个100是( );10个1000是( )。

1亿是10个( ),100个( )1000个( ),10000个( )。

2、网络数据:

中国移动电话的数量超过1亿部。

中国的网民超过1亿人。

哈雷彗星的尾巴长达1亿千米。

我国的小麦产量一直稳定在1亿吨左右。

中国移动平均每天可以净赚1亿元。............

老师:

一亿到底有多大呢?

走路的时候就在想“一亿步有多远?”

吃饭的时候就会想“一亿粒米有多重?”

发作业本的时候就会想“数一亿本练习本要多少时间?”............

二、新知探究

(一)数一数。

1、质疑:出示一大堆本作业本场面让学生直接数【疑惑:数不了】

2、解惑:讨论怎么办?【化难为易】

问题——数作业本要花多少时间?

材料——作业本,计时器

步骤——先测出数1本(10本)所需的时间

再推测出100本,1000本,100000本。。100000000本需要的时间。

过程——表格式

10本 100本 1000本 10000本 100000本1000000本 10000000本 100000000本

9秒 ( ) ( ) ( ) ( )( ) ( ) ( )

算一算

合( )分钟=( )小时=( )天 =( )年

小结——从现在开始(9岁)要数到18岁才能数完。

3、试一试

(二)量一量

一亿张纸摞起来有多厚?

(三).称一称。(小组合作)

1、问 题

数出100粒大米,称称大约重2.5克

照这样计算,一亿粒大米约重多少克?

2、步 骤

1000(粒) 10000 100000000

25(克) 250 2500000

3、结 论:亿一粒大米约重2500000克。

4、运 用

(1)我们全国大约有13亿人,如果每人每天节省一粒米,全国一天大约能节省多少克粮食?

(2)如果每人每天吃大米400克,这些节省下来的大米可供一个人吃多少天?大约合多少年?

课后小结

三、课堂小结。

1、你知道了什么?(节约从每一粒米开始)每人每天大约吃400克大米,13亿中国人每人每天节约一粒米,大约够一个人吃( 81250)天≈(223 )年。

(积少成多,积沙成塔)喜马拉雅山高约88848米,一亿张白纸叠在一起比喜马拉雅山都还高!。。。。。未知的世界等待你去发现!

2、你学到了什么?(化难为易)

课后习题

3、你还想知道什么,请用课堂上的方法和步骤继续研究。并将你收获到知识做成手抄报进行展示。

板书

一亿有多大

篇11:人教版小学四年级数学教案

教学内容:近似数

教学目标:

1、经历生活数据收集的过程,理解近似数表示的必要性。

2、探索“四舍五入”求近似数的方法。

3、能根据实际情况,灵活运用不同精确值的近似数。

教学重点:

教学难点:

教学过程:

一、交流收集的数据。

1、交流收集的数据,说说这些数据的实际意义。在此基础上引导学生对数据进行分类。在各种分类中重点讨论精确数与近似数这两类的特点。

2、出示“填一填,说一说。”中的一组数据,重点讨论取不同的精确值后数据的变化情况,从中让学生发现到“四舍五入”取近似值的方法。如果学生发现有困难,教师也可以补充一些其他的数据,让学生再一次进行观察,直至他们发现“四舍五入”的方法为止。然后,引出这种取近似数的方法叫“四舍五入”的概念。

二、巩固与应用

做试一试第1题:汇报时说说取近似值的方法。试一试第2题:在实际生活中常常需要根据情况取不同精确程度的近似数。在本题中,可先让学生说一说三个近似值的精确程度,再出示下面的两个小问题,供学生讨论。在讨论时重点让学生理解取近似值是根据实际的需要来确定的。

三、作业

练一练1、2、4

板书设计:

用“四舍五入法”求近似数

我国造林面积统计是224318570公顷。

精确到千公顷

万公顷

亿公顷:约2亿公顷。

篇12:四年级下册数学教案人教版

小学四年级下册数学小数点移动教案优秀发文一

教学目标:

1、知道小数点位置移动引起小数大小变化的规律;能依据这一变化规律,比较熟练地判断随着小数点位置的变化,引起这个小数的大小有什么变化。

2、经历小数点移动引起小数大小变化规律的发现过程,体会观察比较、归纳的学习方法。

3、感受数学知识中的逻辑之美,激发学生热爱数学、学习数学的情感。

重点难点:

掌握小数点位置移动引起小数大小的变化的规律

教法学法:

1、教法:情境激趣,引导探究。

2、学法:小组合作,自主探究。

教学准备:

课件

教学过程:

一、生成问题 激兴导入

1、学生根据课题提出问题。

师:知道这节课我们要研究哪部分内容吗?

师:你看了这个题目,大家有什么问题要问吗?

(根据学生回答板书:向哪移?变化?)

师:带着问题学习会让我们的学习过程更清晰,学习目的更明确。相信同学们通过这节课的学习,能解决心中疑惑。

(设计意图:“学贵有疑,利用小学生对于新知识的“好奇心”,引导学生自主发问。这些“问题”来自于学生本身的思考,也就是他们急于探究新知的动力,有利于调动学生积极参与到学习和探索中去。)

2、出示孙悟空打小妖的情境动画,将情境中的数据列出,感知小数点位置的变化及小数大小变化。

师:课前老师通过和同学们交流知道同学们都爱看西游记,这天师徒四人正行走在西去取经的路上,突然杀出一个妖怪,想不想看当时是什么情况?(放动画片)

(设计意图:孩子好动,喜欢动画,这一环节设计能有效地把学生的精神集中起来,并通过动画,让学生初步感知小数点位置的移动会引起小数大小的变化,为探索有什么变化规律作好准备,在心理上产生强烈的“我要探索”的冲动。)

二、探索交流 解决问题

从情境中提取数据让学生填空

0.009米=(9)毫米 ①

0.09米=(90)毫米 ②

0.9米=(900)毫米 ③ 9米=(9000)毫米 ④

1、推导右移规律。

引导学生借助整数部分,从上往下观察

(1)小数点的位置有什么变化?小数大小有什么变化?

(小组讨论交流)

总结出:小数点向右移动一位,小数就扩大到原数的10倍。

分别把3式与1式、4式与1式作比较再研究提出的问题。

生讨论。

整理并总结出右移规律:小数点向右移动一位,小数就扩大到原数的10倍;小数点向右移动两位,小数就扩大到原数的100倍;小数点向右移动三位,小数就扩大到原数的1000倍。

(2)抢答填空题。

小数点向右移动一位,小数就(扩大)到原数的(10)倍;

小数点向右移动两位,小数就(扩大)到原数的(100)倍;

小数点向右移动三位,小数就(扩大)到原数的(1000)倍。

(3)拓展:利用这个规律说出小数点向右移动四位,小数就扩大到原数的10000倍。

2、推导左移规律。

(1)猜测

小数点向右移动,小数会变大,猜一猜小数点向左移动小数有什么变化?

共同验证

整体观察:小数点向左移动。小数越变越小。

(2)引导学生借助整数部分,从下往上观察

小组讨论交流:小数点的位置有什么变化?小数大小有什么变化?

(全班交流)

小数点向左移动一位,小数就缩小到原数的 。

(数学语言讲究精确,师强调缩小到原数的 )

分别把2式与4式、1式与4式作比较研究提出的问题。

同桌讨论交流。

全班交流。

整理并总结出左移规律:小数点向左移动一位,小数就缩小到原数的 ;

小数点向左移动两位,小数就缩小到原数的 ;小数点向左移动三位,小数就缩小到原数的

(3)抢答填空题。

小数点向左移动一位,小数就(缩小)到原数的;

小数点向左移动两位,小数就(缩小)到原数的( );

小数点向左移动三位,小数就(缩小)到原数的( );

(4)拓展:利用这个规律说出小数点向左移动四位,小数就缩小到原数的。

(设计意图:这一环节是课堂教学的主体部分,是学习知识,培养能力的主要途径之一是一节课的关键环节。教师有目的地进行引导、提问,把“小数点位置的移动”与“小数大小的变化”联系起来,学生尝到了探索成功的喜悦。在紧张愉快的教学中,突破了这节课的难点。)

3、记忆规律。

(1)用最短的时间记忆规律

(2)和同学们分享记忆小窍门。

(3)、一起总结小数点歌谣

小数点,真调皮,右移一(位)二(位)三(位)……扩大十(10倍)、百(100倍)、千(1000倍);左移一(位)二(位)三(位)缩小十()、百()、千()……

(4)选择性地提问规律。

4、解答课始提出的疑问。

我们课始的疑问有答案了吗?

擦掉问号改成感叹号。

质疑: 小数点无论是向左移动还是向右移动,位数不够的情况下应该怎么办?

用数字“0”补齐。

三、巩固应用 内化新知

1、帮助师徒四人闯过数学王国的关卡。

2、帮助小猪快餐店解决困难。

快餐店价格中的小数点向左移动一位,让价位变低。

(设计意图:多层次练习,是加强对新规律的巩固和运用,达到活学活用,并有意识地让学生有形象方法记住小数点向右移,原数变大,小数点向左移,原数变小,加强记忆效果,并利用所学新知解决实际问题。)

四、回顾整理,反思提升。

说一说这节课你有什么收获?

(设计意图:培养学生认真严谨的思维习惯)

小学四年级下册数学小数点移动教案优秀发文二

一、教学内容:义务教育课程标准实验教科书数学四年级下册61—63页内容

二、教学目标:

1.知识与技能:通过一组数的比较,观察各数之间的相同点和不同点,引导学生发现小数点位置的移动引起小数大小的变化规律,并应用这一规律计算有关的乘、除法。

2.过程与方法:通过操作、观察、归纳、概括等数学活动,发展数学思维能力。

3..情感态度价值观:培养学生的合作意识及知识迁移和推理能力。

三、重点难点:

重点:小数点位置移动引起小数大小变化规律的应探索及掌握。

难点:小数点位置移动引起小数大小变化规律的理解及灵活应用。

教学准备:小黑板 教学挂图(小数点移动)

四、教学过程

(一)复习准备

1、提问。(1)把5米分别扩大10倍、100倍、1000倍,各是多少米?(2)把5000厘米分别缩小10倍、100倍、1000倍,各是多少厘米?

2、按从大到小的顺序排列。0.004 0.4 0.04

(二)导入新课

1.师:[出示小黑板]下面是四年级三位同学的身高纪录。请大家看一看,这些数据对不对?

(小明14.5米,小红1.38米,小李0.14米)

2.师:你们笑什么呀?

生:小明的身高不对。14.5米太高了。

生:[用手比]小李0.14米也不对,0.14米只有这么高

师:两个错的数据错在哪里?小数点写错了位置。

师:是啊,在小数点的末尾添上0或者去掉0不改变小数的大小,但是小数点的位置移动直接引起小数的大小发生变化。今天我们就一起来学习小数点移动的知识。[板书课题:小数点移动]

(三)探究规律

1、出示情景

出示(例5教学挂图):教师便叙述边板书0.009米---0.9米—0.9米---9米{同学们都看过西游记吧,齐天大圣孙悟空的“金箍棒”平时放在耳朵里,长只有0.009米,遇到妖怪的时候,才亮出来,由小变大,0.009米、0.09米、0.9米、9米、90 米……

师:观察这组数和金箍棒的变化,你有什么发现?(从上往下观察小数点是怎样移动的?数的大小有什么变化吗?从下往上观察小数点是怎样移动的?数的大小有什么变化?)

小结:看来小数点向后移动,原来的数就扩大;小数点向左移动,原来的数就缩小。

板书:右移扩 左移缩

2、合作探究

(1)提问:从上往下观察它们都是把小数点向右移动,却得到了三个不同的数,对吗?看来小数点移动的位数不一样,原数大小的变化也就不一样。数的大小的变化既与小数点移动的方向有关,还与小数点移动位数的多少有关。

(2)合作探究:

究竟有怎样的关系呢?我们来继续深入研究。各组有这样一张表格和一张小数数位表,请你们小组选择其中的一种方法进行研究。先吧空白处填写完整,再观察小数点移动的位数与原来小数的大小变化。小数点可以向左移动,也可以向右移动。

方法1:表格

小数点移动的位数

( )米=( )毫米

小数的大小变化

从( )往( )观察 小数点向( )移动

移动( )位

( )米=( )毫米

移动( )位

( )米=( )毫米

移动( )位

( )米=( )毫米

方法2:(学具中的数位表)

(3)交流汇报

谁来说一说,你们是选择哪种方法研究的? 你们发现了什么?

能概括地说一说我们发现的这个规律吗?

[指名学生对照板书说明小数向右移动引起小数扩大的规律]

悟空打完妖怪,金箍棒要放回去了,谁来说一说这个时候金箍棒怎么变的?(从下到上观察)

(四)实际应用

1.明确数的变化的方法

我们大家研究得出这个规律有什么作用呢?

1.如果要吧一个小数扩大10倍、100倍、1000倍……可以怎么办?

如果要缩小为1/10、1/100、1/1000……呢?

2.集体交流

根据小数点移动的变化规律,如果要吧一个数扩大到它的10倍、100倍、1000倍,只要把小数点向右移动一位、两位、三位就行了。要把一个数缩小到它的1/10、1/100、1/1000,只要把小数点向左移动一位、两位、三位。

3.强化去0、添0的问题

出示例6、7 把0.01扩大到它的10倍、100倍、1000倍,各是多少?

把1缩小到它的1/10、1/100、1/1000,各是多少?

遇到位数不够怎么解决?

小数点向左移动时,如果整数数位不够则要在数的左边用“0”补足。

整百、整千的数,小数点向左移动后,小数末尾的“0”要去掉。

4.填空: 把2.3的小数点向右移动一位,就( )到原数( )倍。

把0.375扩大到原数100倍,小数点向( )移动( )位。

把0.73的小数点向( )移动( )位,就缩小到原数的1/1000。

把30的小数点向( )移动( )位,原数变成0.003。

5. 把1.8改写成下面各数,它的大小有什么变化?

0.018 180 0.0018 1.80

(五)总结本节知识,畅谈收获。

附:板书设计

小数点移动

0.009米→0.09米→0.9米→9米

0.009米=9毫米

0.09米=90毫米

0.9米=900毫米

9米=9000毫米

小学四年级下册数学小数点移动教案优秀发文三

教学目标

1、结合具体情境,探索积的小数位数与乘数的小数位数的关系;

2、经历探索小数乘法计算方法中,如何确定积的小数位数的过程。

导入新课

师:学校最近准备盖一个礼堂,供我们学校的师生使用,现在同学们看到的这幅图就是电脑为我们学校设计的,同学们看后想说什么?

生:(1)真漂亮!

(2)太好了,我们也能坐在这样的礼堂里上课了。

(此处的目的:是想通过看礼堂情境图,达到激发学生学习兴趣的目的。)

初步感知

师:下面让我们走进礼堂去看一看里边的情况:(课件出示礼堂内部情境)边演示,教师边介绍:这个礼堂准备建长30米,宽20米,在礼堂前面的墙壁上挂一块长3米 、宽2米的屏幕,地面上准备铺长0.3米、宽0.2米的地砖……看到这里你们知道了什么?

生:知道这个礼堂的地面、屏幕、地板砖都是长方形的。

师:你们还想知道什么?

生:(1)礼堂的占地面积是多少?

(2)屏幕的面积?

(3)地砖的面积?

……

师:请同学们快速计算一下:礼堂的占地面积、屏幕的面积分别是多少?

生:汇报:(学生汇报的同时教师板书)

(1)礼堂的面积为:30×20=600(米2)

(2)屏幕的面积为:3×2=6(米2)

师:怎样计算地板砖的面积呢?

生:0.3乘0.2

师:0.3乘0.2的积是多少呢?该怎样计算呢? 请同学们先独立思考一下,试一试怎样计算0.3乘0.2的积。

(此处的目的是让学生独立思考,让全班每一个学生有动脑思考的时间、空间,为小组合作互相交流做准备。)

师:四人一小组,互相交流一下你们各自的想法和办法,你们小组准备用什么办法解决这个问题。(在小组讨论的基础上,全班反馈)

生:(1)我们小组是把0.3米变成3分米,0.2米变成2分米,

3×2=6(平方分米2)

师:请你们小组说一说为什么把0.3米、0.2米要变成3分米,2分米呢?生:因为0.3、0.2是小数,我们不会计算,变成3和2就可以计算了。

师:其他小组还有不同意见吗?

生:我们小组试着用画图的方法去做,做一半不会了。

(学生迁移第一节的画图知识,但遇到了困难)

师:除了这些你们还有别的方法吗?

生:没有了。

(此时的学生遇到了困难,他们用求助的眼光看着老师,急切地想知道解决的办法。)

师:老师从你们的眼神中看出,你们遇到了困难,那老师和大家共同解决好吗?

生:可以。

师:课件演示图形。

师:6个小格表示多少?

生:0.06或6/100

师:说明“0.3×0.2”的积是多少?

生:积是0.06。

师:以上两种方法可以帮助我们解决0.3乘0.2的积,还有其它方法吗?

请同学们观察这两个式子:

礼堂面积: 30×20=600(米2)

屏幕的面积:3×2=6(米2)

看一看长与长之间、宽与宽之间有什么关系?请小组同学讨论交流一下。(在小组交流讨论的基础上,全班反馈)

生:(1)我们小组发现:这两个长方形的长有关系,从30→ 3,小数点向左移动1位,缩小10倍。

(2)我们小组发现宽从20→2,小数点向左移动一位,宽缩小10倍。

师:同学们对这两个式子中的长、宽进行了比较,现在我们比较一下(1)和(2)两式的面积,看一看有什么发现?

教师指板书:30 × 20 = 600

3 × 2 = 6

生:面积从600→6小数点向左移动两位,面积缩小100倍。

师:同学们的发现非常正确,你们能不能用刚才推理的方法,比较一下(3)式和(2)式,看一看它们的面积之间会有什么关系?

生:从(2)→(3)长.宽分别缩小10倍,面积就应该缩小100倍,所以0.3×0.2=0.06

师:从刚才的比较中你们发现了什么?

生:发现了乘数变化积也变化。

师:小结:

刚才我们用三种不同的方法分别计算了“0.3乘0.2”的积都是0.06。

巩固练习

师:你们能不能用我们刚才发现的规律,做一做P45的试一试,做完之后同座两人互相交流一下,你们发现了什么?(全班反馈交流)

师:重点追问:“0.4×0.3”的积是多少?怎样得到的?

生:与(1)式比较,4和3分数缩小10倍,所以,积“12”也应缩小100倍,是原来的1/100,所以等于0.12。

师:“0.13乘0.2”的积是多少?

生:与(1)式比较从13到0.13缩小到原来的1/100,到0.2缩小到原来的1/10,所以积应缩小到原来的1/1000,积是0.026。

师:继续完成P45填一填,完成之后独立思考一下,你又发现了什么?然后小组内互相交流一下你们的发现。(全班反馈交流)

师:说一说填的结果。

生:报结果。

师:说一说你们发现了什么?

生:我们发现积的小数位数与两个乘数的小数位数的和一样。

师:能举一个例子说明一下吗?

生:如“0.13×0.2”第一个乘数中是两位小数,第二个乘数是一位小数,积就是三位小数。

师:你们与他们的发现相同的吗?

生:相同

归纳小结

以后我们计算小数乘法时,就可以把小数看成整数去乘,然后在看两个乘数一共有几位小数,在积中从右向左数出几位点上小数点就可了。

如“0.3乘0.2”可以用竖式计算。(教师板书乘法竖式)

篇13:初一数学教案人教版

初一数学教案人教版1

一、学习目标:1.多项式除以单项式的运算法则及其应用.

2.多项式除以单项式的运算算理.

二、重点难点:

重 点: 多项式除以单项式的运算法则及其应用

难 点: 探索多项式与单项式相除的运算法则的过程

三、合作学习:

(一) 回顾单项式除以单项式法则

(二) 学生动手,探究新课

1. 计算下列各式:

(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

2. 提问:①说说你是怎样计算的 ②还有什么发现吗?

(三) 总结法则

1. 多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______

2. 本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

随堂练习: 教科书 练习

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.

E、多项式除以单项式法则

第三十四学时:14.2.1平方差公式

一、学习目标:1.经历探索平方差公式的过程.

2.会推导平方差公式,并能运用公式进行简单的运算.

二、重点难点

重 点:平方差公式的推导和应用

难 点: 理解平方差公式的结构特征,灵活应用平方差公式.

三、合作学习

你能用简便方法计算下列各题吗?

(1)× (2)998×1002

导入新课: 计算下列多项式的积.

(1)(x+1)(x-1) (2)(m+2)(m-2)

(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)

结论:两个数的和与这两个数的差的积,等于这两个数的平方差.

即:(a+b)(a-b)=a2-b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)

例2:计算:

(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)

随堂练习

计算:

(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)

(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)

五、小结:(a+b)(a-b)=a2-b2

初一数学教案人教版2

一、学习目标:1.完全平方公式的推导及其应用.

2.完全平方公式的几何解释.

二、重点难点:

重 点: 完全平方公式的推导过程、结构特点、几何解释,灵活应用

难 点: 理解完全平方公式的结构特征并能灵活应用公式进行计算

三、合作学习

Ⅰ.提出问题,创设情境

一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…

(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?

(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?

(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?

(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?

Ⅱ.导入新课

计算下列各式,你能发现什么规律?

(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;

(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;

(5)(a+b)2=________;(6)(a-b)2=________.

两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.

(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2

四、精讲精练

例1、应用完全平方公式计算:

(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2

例2、用完全平方公式计算:

(1)1022 (2)992

初一数学教案人教版3

一、学习目标:1.添括号法则.

2.利用添括号法则灵活应用完全平方公式

二、重点难点

重 点: 理解添括号法则,进一步熟悉乘法公式的合理利用

难 点: 在多项式与多项式的乘法中适当添括号达到应用公式的目的.

三、合作学习

Ⅰ.提出问题,创设情境

请同学们完成下列运算并回忆去括号法则.

(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)

去括号法则:

去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;

如果括号前是负号,去掉括号后,括号里的各项都要变号。

1.在等号右边的括号内填上适当的项:

(1)a+b-c=a+( ) (2)a-b+c=a-( )

(3)a-b-c=a-( ) (4)a+b+c=a-( )

2.判断下列运算是否正确.

(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。

五、精讲精练

例:运用乘法公式计算

(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

随堂练习:教科书练习

五、小结:去括号法则

六、作业:教科书习题

第三十七学时:14.3.1用提公因式法分解因式

一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式

二、重点难点

重 点: 能观察出多项式的公因式,并根据分配律把公因式提出来

难 点: 让学生识别多项式的公因式.

三、合作学习:

公因式与提公因式法分解因式的概念.

三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)

既ma+mb+mc = m(a+b+c)

由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。

四、精讲精练

例1、将下列各式分解因式:

(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.

例2把下列各式分解因式:

(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

(3) a(x-3)+2b(x-3)

通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.

首先找各项系数的____________________,如8和12的公约数是4.

其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的.

课堂练习

1.写出下列多项式各项的公因式.

(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab

2.把下列各式分解因式

(1)8x-72 (2)a2b-5ab

(3)4m3-6m2 (4)a2b-5ab+9b

(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2

五、小结:

总结出找公因式的一般步骤.:

首先找各项系数的大公约数,

其次找各项中含有的相同的字母,相同字母的指数取次数最小的.

注意:(a-b)2=(b-a)2

六、作业 1、教科书习题

2、已知2x-y=1/3 ,xy=2,求2x4y3-x3y4 3、(-2)+(-2)

4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3

第三十八学时:14.3.2 用“平方差公式”分解因式

一、学习目标:1.使学生了解运用公式法分解因式的意义;

2.使学生掌握用平方差公式分解因式

二、重点难点

重 点: 掌握运用平方差公式分解因式.

难 点: 将单项式化为平方形式,再用平方差公式分解因式;

学习方法:归纳、概括、总结

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法.

1.请看乘法公式

(a+b)(a-b)=a2-b2 (1)

左边是整式乘法,右边是一个多项式,把这个等式反过来就是

a2-b2=(a+b)(a-b) (2)

左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式.

a2-b2=(a+b)(a-b)

2.公式讲解

如x2-16

=(x)2-42

=(x+4)(x-4).

9 m 2-4n2

=(3 m )2-(2n)2

=(3 m +2n)(3 m -2n)

四、精讲精练

例1、把下列各式分解因式:

(1)25-16x2; (2)9a2- b2.

例2、把下列各式分解因式:

(1)9(m+n)2-(m-n)2; (2)2x3-8x.

补充例题:判断下列分解因式是否正确.

(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)?(a2-1).

五、课堂练习教科书练习

六、作业 1、教科书习题

2、分解因式:x4-16 x3-4x 4x2-(y-z)2

3、若x2-y2=30,x-y=-5求x+y

初一数学教案人教版4

一、学习目标:

1.使学生会用完全平方公式分解因式.

2.使学生学习多步骤,多方法的分解因式

二、重点难点:

重点: 让学生掌握多步骤、多方法分解因式方法

难点: 让学生学会观察多项式特点,恰当安排步骤,恰当地选用不同方法分解因式

三、合作学习

创设问题情境,引入新课

完全平方公式(a±b)2=a2±2ab+b2

讲授新课

1.推导用完全平方公式分解因式的公式以及公式的特点.

将完全平方公式倒写:

a2+2ab+b2=(a+b)2;

a2-2ab+b2=(a-b)2.

凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解

用语言叙述为:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方

形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.

由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.

练一练.下列各式是不是完全平方式?

(1)a2-4a+4; (2)x2+4x+4y2;

(3)4a2+2ab+ b2; (4)a2-ab+b2;

四、精讲精练

例1、把下列完全平方式分解因式:

(1)x2+14x+49; (2)(m+n)2-6(m +n)+9.

例2、把下列各式分解因式:

(1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy.

课堂练习: 教科书练习

补充练习:把下列各式分解因式:

(1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;

初一数学教案人教版5

教学目标

1.等腰三角形的概念. 2.等腰三角形的性质. 3.等腰三角形的概念及性质的应用.

教学重点: 1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.

教学难点:等腰三角形三线合一的性质的理解及其应用.

教学过程

Ⅰ.提出问题,创设情境

在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

有的三角形是轴对称图形,有的三角形不是.

问题:那什么样的三角形是轴对称图形?

满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.

我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.

Ⅱ.导入新课: 要求学生通过自己的思考来做一个等腰三角形.

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.

等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.

思考:

1.等腰三角形是轴对称图形吗?请找出它的对称轴.

2.等腰三角形的两底角有什么关系?

3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.

要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.

沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.

由此可以得到等腰三角形的性质:

1.等腰三角形的两个底角相等(简写成“等边对等角”).

2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).

由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).

如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

求:△ABC各角的度数.

分析:根据等边对等角的性质,我们可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形内角和为180°,就可求出△ABC的三个内角.

把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.

解:因为AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等边对等角).

设∠A=x,则 ∠BDC=∠A+∠ABD=2x,

从而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.

[师]下面我们通过练习来巩固这节课所学的知识.

Ⅲ.随堂练习:1.课本P51练习1、2、3. 2.阅读课本P49~P51,然后小结.

初一数学教案人教版

篇14:六年级数学教案人教版

六年级数学1

教学环节教学预设

一、问题情境

1.教师拿出自己的钥匙,并引出密码锁。分别说一说在什么地方或物品见过密码锁,见过几个数字的密码锁。

师:同学们,看老师手里拿的是什么?

生:钥匙。

师:对,这些都是用来开锁的钥匙。现实生活中,还有一种锁是不用钥匙的,你们知道是什么锁吗?

生:密码锁

师:谁知道什么地方或物品上经常用密码锁?

学生可能说出:保险柜、保险箱、旅行箱,等等。

师:看来同学们知道的不少,那谁来说一说你在什么东西上见过几个数字的密码锁

学生可能会说:

●我在旅行箱上见过三位数的密码锁。

●我在保险柜上见过六位数的密码锁。

●有的保险柜上的密码锁是8个数字。

2.提出兔博士的问题,师生交流。师:那谁知道旅行箱上为什么用密码锁,而不是钥匙锁呢?

学生可能会说:

●不怕丢钥匙。

●能够保密,别人不知道密码开不了,也不能仿制。

……

师:还有一个非常重要的原因是,用一定个数的数字组成密码,可以有许多变化,也就是可以组成许多密码,即使你知道了密码锁是几个数字,也很难判断是哪个密码。今天,我们就来研究一下数字密码锁的秘密。

板书:数字密码锁

二、探索密码锁

1.提出探索由两个数字组成多少个密码的问题,让学生分别写出0打头和1打头组成的密码。

师:现在,我们先来研究一下最简单的情况。假如数字锁的密码是由两个数字组成的,同学们想一想,用0、1、2、3、4、5、6、7、8、9这十个数字可以组成多少个密码?自己在本上写一写。用0打头时可以组成几个密码?

学生写密码,然后交流,得出:

用0打头,得到的10个密码是00、01、02、03、04、05、06、07、08、09

板书:0打头——10个

师:再用1打头,写一写可以组成几个密码?

学生写完后交流,得出:

用1打头,得到的10个密码是10、11、12、13、14、15、16、17、18、19

板书:1打头——10个

师:想一想,用2打头,可以组成几个密码?

生:10个。

2.分别提出:用3、4、5、6、7、8、9打头各能组成多少个?一共能组成多少个?在学生讨论的同时,得出:10×10=100(个)师:分别用3、4、5、6、7、8、9打头呢?

生:分别可以组成10个

师:一共10个数字,每一个数字打头都能组成10个密码,那一共可以组成多少个密码呢?

生:一共可以组成100个。

教师板书:10×10=100(个)

3.教师谈话并告诉学生用三个数字组成1000个密码,鼓励学生合作进行推算。师:刚才,我们通过写出几组密码,推算得出:用0到9的10个数字组成两个数字的密码,可以组成100个,那你们想知道,用这10个数字组成三个数字的密码,能组成多少个吗?

教师板书:10×10×10=1000(个)

师:可以组成1000个,你们知道是怎么推算出这个结果吗?同学合作,试着推算一下。

学生先自己推算,教师巡视,个别指导。

4.交流学生推算的方法,说明结果的准确性。给学生充分交流不同想法的机会。师:谁来汇报一下,你们是怎样推算的?

学生可能有以下说法:

●组成密码的数字都可以是0、1、2、3、4、5、6、7、8、9的十个数字。如果第一位数字是0,第二位数字是0,第三位数字是0、1、2、3、4、5、6、7、8、9,即:000、001、002、003、…009共10个密码。

如果第一位数字是0,第二位数字是1,第三位数字是0、1、2、3、4、5、6、7、8、9,即:010、011、012、013、…019共10个密码;……,所以第一位数字是0的密码共有10×10=100(个)

同样第一位数字是1,也有100个,第一位数字是2,也有100个,…第一位数字是9,也有100个,所以由三个数字组成的密码共有10×10×10=1000(个)

●用0、1、2、3、4、5、6、7、8、9可以组成100个两个数字的密码,在每个密码后面再加一个数字,都能组成10个密码,所以一共可以组成100×10=1000(个)

●用0、1、2、3、4、5、6、7、8、9十个数字中任一个数打头,后面都能组成(10×10)个两个数字的密码,所以一共可以组成10×10×10=1000(个)

只要学生能够大胆说出自己的推理过程,无论正确与否,教师首先给以鼓励,然后教师参与交流。小精灵儿童网

5.简单说明1000个密码与密码箱的关系,然后,让学生计算偷偷打开一个三个数字的密码箱需要多少时间。算完后交流。师:同学们用不同方法推算出了由三个数字组成的密码有1000个。大家知道,一个密码箱只有一个密码,也就是说,一个三个数字的密码锁只是这1000个密码中的一个。所以知道密码的人,很容易就打开了,不知道密码的人,要想偷打开箱子,可就难了,你们知道难在哪吗?

生:他得一个一个地试。

师:对,要一个一个地去试,这样就有可能要试1000次才能打开。请同学们算一算,如果每试一个密码要10秒钟,试1000次需要多长时间。

学生算完后,交流计算结果。

1000×10÷60÷60≈2.7(时)

6.告诉学生六个数字组成的密码有1000000个,让学生计算打开这样一个密码锁需要多少天。师:不知道密码,要想打开一个由三个数字组成的密码锁,就要花近3个小时的时间。重要的文件箱,都是由六个数字组成的密码锁,这样的密码有1000000个(板书:1000000个),不知道密码的人,想打开箱子所花的时间会更多。请同学们算一算,如果试一次的时间仍然是10秒,那么打开一个六位密码锁要用多少天呢?

学生汇报计算结果。

1000000×10÷60≈16666(分),

16666÷60≈277(时),

277÷24≈11(天)

师:可见,数字密码锁具有很强的安全性,因为打开一个不知道密码的锁会用很长时间,因此就增加了密码锁的安全性。所以人们常把贵重物品或重要文件,放在安全可靠的密码箱中,防止泄密或丢失。

三、汽车牌照问题

1.让学生自己读书并解答。交流时,说一说是怎样推算的。

师:刚才我们研究的数字密码问题,实际上是运用了我们数学上数的组成的知识请同学们打开书79页,看汽车牌照问题。试着计算可增加多少个车牌号?

学生试算,教师巡视。www.xjlet.com/

师:谁来说一说你是怎样想的?怎样计算的?

生:由四个数字组成的数码有10×10×10×10=10000(个),在这些数码前面增加一个字母,就可以增加1万个。

四、电话号码问题

提出电话号码问题,鼓励学生合作解决。交流时,给学生发表不同意见的机会。

师:随着人们生活水平的提高,不仅私人汽车发展得很快,全球的电话拥有量更以空前的速度增长着。请同学们解决一下书中79页电话号码增位问题。这个问题较难,试一试!可以同桌商量。

同桌讨论,试做。

师:谁来说一说你是怎样做的?结果是多少?

学生汇报情况,教师参与。

学生可能会出现以下结果:

●由五个数字组成的数码有10×10×10×10×10=100000(个),把10万个数码每个后面增加一个数字,可增加10个数码。所以,一共可以增加100万个,即:10000×10=1000000(个)

●电话号码没有0打头的,所以要去掉0打头的,所以,五位数的电话号码有10×10×10×10×9=90000(个),变成六位后是10×10×10×10×10×9=900000(个),增加了810000个。

六年级数学2

(一)课型定位:重点课 (二)本课分析(从单元分析入手) 本课在单元中的定位:教材在安排比的意义的学习时,分为三个阶段:比的意义、比的各部分名称、比与分数及除法的关系。比的意义教材是从日常生活中的相除关系的例子中引出的,通过对具体例子的讨论,明确了比的概念是建立在除法的意义基础之上的,揭示了比与除法之间的本质联系,是一种以“倍比”为基础的比较关系。

教材在介绍比的各部分名称时提出了比值的意义,它既是一个知识点,又有助于进一步理解比的意义。比与分数、除法的关系是本节课的又一教学要点,理解它们之间的关系,对后继学习特别是综合应用各种知识解决问题具有重要意义,同时也是理解比的后项不能为0的认知基础。

本课目标:

1-1、理解比的意义,掌握比各部分的名称和读写法,会求比值;

1-2、理解比与分数、除法的关系,会正确地写出比。

2、教学方法:比是在学生已经掌握了整数、小数、分数的基础知识,掌握一些常见的数量关系,掌握了代数初步知识,具备了运用这些知识解决简单的实际问题的能力上进行教学的。教学比时要联系学生已有的数学知识通过实例的分析与归纳,使学生理解比的意义,对一些已有的知识和常见的数量关系进行进一步的研究的基础上揭示比的关系。在认识比的基础上揭示比、分数、除法之间的联系。通过揭示比与除法之间的关系引出求比值的方法。比的性质是在学习了比、分数、除法之间的联系的基础上进行的。除法有商不变的性质,分数有分数的基本性质。

(三)教学重难点: 百分数的意义,百分数的读法写法。

(四)教学设计过程:

教学意图

教师活动

学生活动

媒体使用及目的

通过回忆旧知识引导出新的内容。

比较异同,抽象概念,加深理解。

结合算式理解意义。

看书自学培养能力。

揭示联系与区别,了解本质差别。

练习巩固。

一、复习:

出示准备题:

(1)航模小组有男生8人,女生5人。男生人数是女生人数的几倍?女生人数男生人数的几分之几?

(2)用3千克盐和10千克水,可以配制出一些盐水,如何比较盐和水的重量之间的倍数关系?

(3)一辆汽车3小时行驶180千米,平均每小时行驶多少千米?

(4)学校用750元买了2台同样的手风琴,平均每台手风琴多少元?

二、导入新课:

(一)认识比的意义。

1、以上几道题有什么相同之处?有什么差别?

2 、电脑出示:学雷锋小组有男生6人,女生5人。

(1)根据这两个条件,请提出一个简单的问题,对题目中的两个数量进行比较。

(2)我们那用减法可以比较两个数量的差,但是在实际生活和生产当中,还经常运用别的方法对两个数量进行比较,这就是我们今天学习的内容。板书:比的意义

(3)电脑出示本节课的教学内容。

(4)再看条件,补充一个问题,对两个数量进行比较:

板书:6÷5=6/5

5÷6=5/6

师述:6、5表示什么人数?结果表示什么?

这两题有什么方法对男生人数和女生人数进行比较?

(5)电脑出示:路程240千米,时间4小时,速度60千米

师述:请选则两个条件,补充一个问题,使能对两个数量用除法进行比较。

板书:240÷4=60千米

240÷60=40小时

题目中的数量各表示什么?

(6)比较以上4个算式的异同。

(7)我们可以用除法对两个数量进行比较 ,因此,我们把两个数相除又叫两个数的比。

板书:两个数相除又叫两个数的比

要注意什么?

(8)男生人数与女生人数相除,又叫男女生人数的比是6:5

学生说其余三个算式。

(9)相同数量的比结果表示是什么?

不同数量的比结果表示是什么?

(10)练习:

学生任选两个条件进行比。

单价和数量能比吗?

按点:

1、“神舟”六号飞行的大约总航程和飞行的大约时间的比是( )。

A、325:116

B、116:325

C、77:116

2、“神舟”六号飞行的大约时间和绕地球圈数的比是(  )。

A、77:116

B、116:325

C、116:77

3、买3支钢笔6元,钢笔的总价和数量的比是( )比( )。

A、6  3

B、3  6

4、小华3天看书100页,小华看书的页数与天数的比是()比()。

A、100 3

B、3  100

(二)认识比的写法及各部分的名称。

我们知道了什么是比,怎样写比,有几种形式?

板书:6:5或6/5

1、把黑板上的除法算式改写成比的形式。

2、看书55页了解比的各部分的名称。

板书:前项、比号、后项、比值

说明比值的结果可以是小数、分数和整数,比值的结果是一个数。

3、思考:比和比值有什么不同?

4、练习。

(三)认识比与除法的关系。

通过以上的计算我们发现比、除法、分数有密切的联系,请观察板书回答比、除法、分数的关系。

1、既然两个数相除又叫做两个数的比,那么除法与 比之间有什么联系?那么还与什么有联系?

2、看表了解除法、比、分数之间的联系与区别。

除法分数中对什么有规定?比呢?为什么?

板书:比的后项不能是0

四、今天我们学习了比的有关知识,下面进行练习。

基本练习p38/1

提高练习p39/3

五、小结。

男生人数是女生人数的1.6倍,女生人数男生人数的5/8。

3÷10

180÷3

750÷2

都是除法算式

表示的含义不同,男生比女生多几人?

男生人数是女生人数的几倍?女生人数男生人数的几分之几?

这两题有除法方法对男生人数和女生人数进行比较。

速度、路程、时间,都是除法算式,但是表示的含义不同。

相同数量的比结果表示是倍数关系,不同数量的比结果表示是一种新的数量。

比是两个数之间的倍数关系,比值是一个数。

根据表格呈现的内容回答。

除数,分母不能是0,同样,比的后项也不能是0。

1.正方形的边长与周长的比是()(1)1∶4 (2) 3∶12(3)4 ∶16(4) 0.25∶1

2.汽车3小时行驶180千米,汽车行使路程和所用时间的比:(   ) A180∶3B 60∶1 C 18 ∶0.3

3、绿化队种了200株国槐成活的有195棵,成活棵数与种植棵数的比是(  )

A 200:195  B 195:200

4、小华3天看书100页,小华看书的页数与天数的比是()A 3:100  B 100:3

5、杂技团的一种自行车有大小两个车轮。在大车轮转动15周的同时,小车轮转动47周,大车轮与小车轮在同一时间内转数的比是(  )A   15:47   B 47:15

1、“神舟”六号飞行的大约时间和绕地球圈数的比是( )

A、77:116 B、116:325 C、116:77

2、买3支钢笔6元,钢笔的总价和数量的比是(    )

1、6 :3       2、3 :6       3、2:1

3、“神舟”六号飞行的大约总航程和飞行的大约时间的比是()

A、325:116 B、116:325 C、77:116

一个圆柱体,底面直径与高相等,它的侧面积与表面积的比是(?)

A 3:2   B  2:3  C  4:9

(五)板书设计:

比的意义

比和除法有着密切的联系,两个数相除,又叫做这两个数的比。

60:21=60÷21= =

前项 后项 比值

比的前项除以后相,所得的商叫做比值。

(六)作业预设:

六年级数学3

分数乘法两步应用题

内容:课本第19页例3,完成做一做题和练习五的第6~10题。

目的:

1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法两步应用题。

2.培养分析能力,发展学生思维。

教学过程:

一、复习。

1.先说出下列各算式表示的意义,再口算出得数。

2.指出下面每组中的两个量,应把谁看作单位1。

(1)梨的筐数是苹果的 。

(2)梨的筐数的 和苹果的筐数相等。

(3)白羊只数的 等于黑羊的只数。

(4)白羊的只数相当于黑羊的 。

3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。

(1) 有40筐苹果,梨的筐数是苹果的 。( )?

(2) 梨的筐数是 和苹果的筐数相等,有40筐。( )?

(3) 有40只白羊,白羊的只数的 等于黑羊的只数。( )?

(4)白羊的只数相当于黑羊的 ,有40只黑羊。( )?

二、新授。

1.出示例3。

小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的是小华的 。小新储蓄了多少元?

(1)指名读题,说也已知条件和问题。

(2)怎样用线段图表示已知条件和问题。

先画一条线段,表示谁储蓄的钱数?为什么?

学生回答后,教师画线段图。

再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:

根据小华储蓄的钱数是小亮的 ,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。

然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:

根据小新储蓄的钱数是小华的 ,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。

(2)分析数量关系。

引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。

(3)确定每一步的算法,列式计算。

①求小华储蓄的钱数怎样想?

引导学生回答:根据小华储蓄的钱数是小亮的

把小亮的钱数看作单位1,就是求18的 是多少,所以用乘法计算。列式:

(元)

②求小新储蓄的钱数怎样想?

引导学生回答:根据小新储蓄的钱数是小华的 ,把小华的钱数看作单位1,就是求15的 是多少,所以也用乘法计算。列式:

(元)

把上面的分上步算式列成综合算式,该怎样列?

(元)

(4)检验,写答语。答:小新储蓄了10元。

2.做一做。

六年级数学4

理解百分数的意义,熟练地读、写百分数。

教学难点:

正确理解百分数和分数的联系与区别。

学法指导:

引探教学法教具

学具课件:

通案个案 教学过程:

一、联系生活导入新课。 交流收集到的百分数。请同学们把收集到的百分数展示给大家。 (1)羊毛衫羊毛的含量是90%。 (2)上衣腈纶的含量是23%。

(3)白酒中酒精的.含量是52%。…… 大家收集到百分数真不少,看来百分数在生活中应用很广泛,今天我们就来研究百分数。 二、合作探究学习新知

1、让学生交流已经知道百分数的哪些知识。 生:会读百分数、会写百分数…… 2、教师示范“%”和百分数的写法。(写百分号时,两个圆圈要写得小一些,以免和数字混淆)。

3、让学生写出几个喜欢的百分数,并读出来。 4、小组交流认识百分数的意义。 (1)教师提问:什么叫百分数呢?生答。

(表示一个数是另一个数的百分之几的数,叫做百分数,也可以叫做百分率或百分比。) (2)教师解释:百分数是一种特殊的倍比关系,它的后项是一种固定的数100,所以也叫百分率或百分比。

(3)讨论:百分数的分子可以是哪些数呢? 学生分组讨论,教师巡视指导。各组把讨论的结果在全班交流,教师小结。

5、讨论百分数和分数的联系及区别:联系是:都可以表示一个数是另一个数的几分之几,即都可以表示两个数的倍数关系。区别是:分数既可以表示两个数的倍数关系,又可以表示一个数,表示数时可以带单位名称。而百分数只表示两个数的倍数关系,它的后面不能写单位名称。

6、练习:下面的这些分数哪个能写成百分数。

(1)六一班的同学中男同学的人数占48/100。 (2)一个苹果重27/100千克。

(3)一堆煤重87/100吨,运走它的32/100

三、巩固应用熟练掌握 (1)完成P78“做一做

”(2)在规定时间内写出10个满意的百分数,结束后让学生说出实际写的个数是规定的百分之几。

四、课堂小结体验收获

五、课堂检测 (一)必做题

1、25%的计数单位是( ),它有( )个这样的单位。

2、分母是100的分数叫做百分数。( )

3、一杯牛奶重25%千克。( )

4、百分数的意义与分数的意义完全相同。( )

(二)选做题 选择合适的百分数填空。 2% 15% 120% 100% 0.0001%

1、今天上课,积极举手的同学占全班人数的( )

2、只要同学们认真学习,这个单元的及格率一定会达到( )

3、大海捞针的可能性是( )

【四年级数学教案人教版】相关文章:

1.人教版四年级下册数学教案

2.人教版四年级上册数学教案

3.四年级数学教案

4.小学数学教案人教版

5.人教版小学数学教案

6.人教版初中数学教案

7.人教版高三数学教案

8.小学四年级数学教案

9.四年级上册数学教案

10.二年级下册数学教案人教版

下载word文档
《四年级数学教案人教版.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部