欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>人教版高三数学教案

人教版高三数学教案

2023-06-26 08:24:54 收藏本文 下载本文

“躺平达人”通过精心收集,向本站投稿了13篇人教版高三数学教案,这次小编给大家整理后的人教版高三数学教案,供大家阅读参考,也相信能帮助到您。

人教版高三数学教案

篇1:人教版高三数学教案

教学目标

掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.

教学重难点

掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.

教学过程

【示范举例】

例1:数列是首项为23,公差为整数,

且前6项为正,从第7项开始为负的等差数列

(1)求此数列的公差d;

(2)设前n项和为Sn,求Sn的值;

(3)当Sn为正数时,求n的值.

篇2:高三数学教案

教学目标

理解数列的概念,掌握数列的运用

教学重难点

理解数列的概念,掌握数列的运用

教学过程

【知识点精讲】

1、数列:按照一定次序排列的一列数(与顺序有关)

2、通项公式:数列的第n项an与n之间的函数关系用一个公式来表示an=f(n)。

(通项公式不)

3、数列的表示:

(1)列举法:如1,3,5,7,9……;

(2)图解法:由(n,an)点构成;

(3)解析法:用通项公式表示,如an=2n+1

(4)递推法:用前n项的值与它相邻的项之间的关系表示各项,如a1=1,an=1+2an-1

4、数列分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,xx数列

5、任意数列{an}的前n项和的性质

篇3:高三数学教案

教学目标:

1、知识与技能:

1)了解导数概念的实际背景;

2)理解导数的概念、掌握简单函数导数符号表示和基本导数求解方法;

3)理解导数的几何意义;

4)能进行简单的导数四则运算。

2、过程与方法:

先理解导数概念背景,培养观察问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程及运算,培养解决问题的能力。

3、情态及价值观;

让学生感受数学与生活之间的联系,体会数学的美,激发学生学习兴趣与主动性。

教学重点:

1、导数的求解方法和过程;

2、导数公式及运算法则的熟练运用。

教学难点:

1、导数概念及其几何意义的理解;

2、数形结合思想的灵活运用。

教学课型:复习课(高三一轮)

教学课时:约1课时

篇4:高三数学教案

一、指导思想与理论依据

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析

三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四)。教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。

三、学情分析

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

四、教学目标

(1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

(2)、能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

(3)、创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

(4)、个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

五、教学重点和难点

1、教学重点

理解并掌握诱导公式。

2、教学难点

正确运用诱导公式,求三角函数值,化简三角函数式。

六、教法学法以及预期效果分析

“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。

1、教法

数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。

在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。

2、学法

“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。如何能让学生程度的消化知识,提高学习热情是教者必须思考的问题。

在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。

3、预期效果

本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。

篇5:高三数学教案

1.数列的概念和简单表示法?

(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式);? (2)了解数列是自变量为正整数的一类函数.?

2.等差数列、等比数列?

(1)理解等差数列、等比数列的概念;?

(2)掌握等差数列、等比数列的通项公式与前n项和公式;?

(3)能在具体问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题;?

(4)了解等差数列与一次函数、等比数列与指数函数的关系. 本章重点:1.等差数列、等比数列的定义、通项公式和前n项和公式及有关性质;

2.注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、分组求和法、函数与方程思想、数学模型思想以及离散与连续的关系.?

本章难点:1.数列概念的理解;2.等差等比数列性质的运用;3.数列通项与求和方法的运用. 仍然会以客观题考查等差数列与等比数列的通项公式和前n项和公式及性质,在解答题中,会保持以前的风格,注重数列与其他分支的综合能力的考查,在高考中,数列常考常新,其主要原因是它作为一 个特殊函数,使它可以与函数、不等式、解析几何、三角函数等综合起来,命出开放性、探索性强的问题,更体现了知识交叉命题原则得以贯彻;又因为数列与生产、生活的联系,使数列应用题也倍受欢迎.

知识网络

6.1 数列的概念与简单表示法

典例精析

题型一 归纳、猜想法求数列通项

【例1】根据下列数列的前几项,分别写出它们的一个通项公式:

(1)7,77,777,7 777,

(2)23,-415,635,-863,

(3)1,3,3,5,5,7,7,9,9,

【解析】(1)将数列变形为79(10-1),79(102-1),79(103-1),,79(10n-1),

故an=79(10n-1).

(2)分开观察,正负号由(-1)n+1确定,分子是偶数2n,分母是13,35,57, ,(2n-1)(2n+1),故数列的通项公式可写成an =(-1)n+1 .

(3)将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,.

故数列的通项公式为an=n+ .

【点拨】联想与转换是由已知认识未知的两种有效的思维方法,观察归纳是由特殊到一般的有效手段,本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项序数的一般规律,从而求得通项.

【变式训练1】如下表定义函数f(x):

x 1 2 3 4 5

f(x) 5 4 3 1 2

对于数列{an},a1=4,an=f(an-1),n=2,3,4,,则a2 008的值是

A.1 B.2 C.3 D.4

【解析】a1=4,a2=1,a3=5,a4=2,a5=4,,可得an+4=an.

所以a2 008=a4=2,故选B.

题型二 应用an= 求数列通项

【例2】已知数列{an}的前n项和Sn,分别求其通项公式:

(1)Sn=3n-2;

(2)Sn=18(an+2)2 (an0).

【解析】(1)当n=1时,a1=S1=31-2=1,

当n2时,an=Sn-Sn-1=(3n-2)-(3n-1-2)=23n-1,

又a1=1不适合上式,

故an=

(2)当n=1时,a1=S1=18(a1+2)2,解得a1=2,

当n2时,an=Sn-Sn-1=18(an+2)2-18(an-1+2)2,

所以(an-2)2-(an-1+2)2=0,所以(an+an-1)(an-an-1-4)=0,

又an0,所以an-an-1=4,

可知{an}为等差数列,公差为4,

所以an=a1+(n-1)d=2+(n-1)4=4n-2,

a1=2也适合上式,故an=4n-2.

【点拨】本例的关键是应用an= 求数列的通项,特别要注意验证a1的值是否满足2的一般性通项公式.

【变式训练2】已知a1=1,an=n(an+1-an)(nN*),则数列{an}的通项公式是()

A.2n-1 B.(n+1n)n-1 C.n2 D.n

【解析】由an=n(an+1-an)an+1an=n+1n.

所以an=anan-1an-1an-2a2a1=nn-1n-1n-23221=n,故选D.

题型三 利用递推关系求数列的通项

【例3】已知在数列{an}中a1=1,求满足下列条件的数列的通项公式:

(1)an+1=an1+2an;(2)an+1=2an+2n+1.

【解析】(1)因为对于一切nN*,an0,

因此由an+1=an1+2an得1an+1=1an+2,即1an+1-1an=2.

所以{1an}是等差数列,1an=1a1+(n-1)2=2n-1,即an=12n-1.

(2)根据已知条件得an+12n+1=an2n+1,即an+12n+1-an2n=1.

所以数列{an2n}是等差数列,an2n=12+(n-1)=2n-12,即an=(2n-1)2n-1.

【点拨】通项公式及递推关系是给出数列的常用方法,尤其是后者,可以通过进一步的计算,将其进行转化,构造新数列求通项,进而可以求得所求数列的通项公式.

【变式训练3】设{an}是首项为1的正项数列,且(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,),求an.

【解析】因为数列{an}是首项为1的正项数列,

所以anan+10,所以(n+1)an+1an-nanan+1+1=0,

令an+1an=t,所以(n+1)t2+t-n=0,

所以[(n+1)t-n](t+1)=0,

得t=nn+1或t=-1(舍去),即an+1an=nn+1.

所以a2a1a3a2a4a3a5a4anan-1=12233445n-1n,所以an=1n.

总结提高

1.给出数列的前几项求通项时,常用特征分析法与化归法,所求通项不唯一.

2.由Sn求an时,要分n=1和n2两种情况.

3.给出Sn与an的递推关系,要求an,常用思路是:一是利用Sn-Sn-1=an(n2)转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.

6.2 等差数列

典例精析

题型一 等差数列的判定与基本运算

【例1】已知数列{an}前n项和Sn=n2-9n.

(1)求证:{an}为等差数列;(2)记数列{|an|}的前n项和为Tn,求 Tn的表达式.

【解析】(1)证明:n=1时,a1=S1=-8,

当n2时,an=Sn-Sn-1=n2-9n-[(n-1)2-9(n-1)]=2n-10,

当n=1时,也适合该式,所以an=2n-10 (nN*).

当n2时,an-an-1=2,所以{an}为等差数列.

(2)因为n5时,an0,n6时,an0.

所以当n5时,Tn=-Sn=9n-n2,

当n6时,Tn=a1+a2++a5+a6++an

=-a1-a2--a5+a6+a7++an

=Sn-2S5=n2-9n-2(-20)=n2-9n+40,

所以,

【点拨】根据定义法判断数列为等差数列,灵活运用求 和公式.

【变式训练1】已知等差数列{an}的前n项和为Sn,且S21=42,若记bn= ,则数列{bn}()

A.是等差数列,但不是等比数列 B.是等比数列,但不是等差数列

C.既是等差数列,又是等比数列 D.既不是等差数列,又不是等比数列

【解析】本题考查了两类常见数列,特别是等差数列的性质.根据条件找出等差数列{an}的首项与公差之间的关系从而确定数列{bn}的通项是解决问题的突破口.{an}是等差数列,则S21=21a1+21202d=42.

所以a1+10d=2,即a11=2.所以bn= =22-(2a11)=20=1,即数列{bn}是非0常数列,既是等差数列又是等比数列.答案为C.

题型二 公式的应用

【例2】设等差数列{an}的前n项和为Sn,已知a3=12,S120,S130.

(1)求公差d的取值范围;

(2)指出S1,S2,,S12中哪一个值最大,并说明理由.

【解析】(1)依题意,有

S12=12a1+12(12-1)d20,S13=13a1+13(13-1)d20,

由a3=12,得a1=12-2d.③

将③分别代入①②式,得

所以-247

(2)方法一:由d0可知a1a3a13,

因此,若在112中存在自然数n,使得an0,an+10,

则Sn就是S1,S2,,S12中的最大值.

由于S12=6(a6+a7)0,S13=13a70,

即a6+a70,a70,因此a60,a70,

故在S1,S2,,S12中,S6的值最大.

方法二:由d0可知a1a3a13,

因此,若在112中存在自然数n,使得an0,an+10,

则Sn就是S1,S2,,S12中的最大值.

故在S1,S2,,S12中,S6的值最大.

【变式训练2】在等差数列{an}中,公差d0,a2 008,a2 009是方程x2-3x-5=0的两个根,Sn是数列{an}的前n项的和,那么满足条件Sn0的最大自然数n=.

【解析】由题意知 又因为公差d0,所以a2 0080,a2 0090. 当

n=4 015时,S4 015=a1+a4 01524 015=a2 0084 015当n=4 016时,S4 016=a1+a4 01624 016=a2 008+a2 00924 0160.所以满足条件Sn0的最大自然数n=4 015.

题型三 性质的应用

【例3】某地区20xx年9月份曾发生流感,据统计,9月1日该地区流感病毒的新感染者有40人,此后,每天的新感染者人数比前一天增加40人;但从9月11日起,该地区医疗部门采取措施,使该种病毒的传播得到控制,每天的新感染者人数比前一天减少10人.

(1)分别求出该地区在9月10日和9月11日这两天的流感病毒的新感染者人数;

(2)该地区9月份(共30天)该病毒新感染者共有多少人?

【解析】(1)由题意知,该地区9月份前10天流感病毒的新感染者的人数构成一个首项为40,公差为40的等差数列.

所以9月10日的新感染者人数为40+(10-1)40=400(人).

所以9月11日的新感染者人数为400-10=390(人).

(2)9月份前10天的新感染者人数和为S10=10(40+400)2=2 200(人),

9月份后20天流感病毒的新感染者的人数,构成一个首项为390,公差为-10的等差数列.

所以后20天新感染者的人数和为T20=20390+20(20-1)2(-10)=5 900(人).

所以该地区9月份流感病毒的新感染者共有2 200+5 900=8 100(人).

【变式训练3】设等差数列{an}的前n项和为Sn,若S410,S515,则a4的最大值为

.

【解析】因为等差数列{an}的前n项和为Sn,且S410,S515,

所以5+3d23+d,即5+3d6+2d,所以d1,

所以a43+1=4,故a4的最大值为4.

总结提高

1.在熟练应用基本公式的同时,还要会用变通的公式,如在等差数列中,am=an+(m-n)d.

2.在五个量a1、d、n、an、Sn中,知其中的三个量可求出其余两个量,要求选用公式要恰当,即善于减少运算量,达到快速、准确的目的.

3.已知三个或四个数成等差数列这类问题,要善于设元,目的仍在于减少运算量,如三个数成等差数列时,除了设a,a+d,a+2d外,还可设a-d,a,a +d;四个数成等差数列时,可设为a-3m,a-m,a+m,a+3m.

4.在求解数列问题时,要注意函数思想、方程思想、消元及整体消元的方法的应用.

6.3 等比数列

典例精析

题型一 等比数列的基本运算与判定

【例1】数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2nSn(n=1,2,3,).求证:

(1)数列{Snn}是等比数列;(2)Sn+1=4an.

【解析】(1)因为an+1=Sn+1-Sn,an+1=n+2nSn,

所以(n+2)Sn=n(Sn+1-Sn).

整理得nSn+1=2(n+1)Sn,所以Sn+1n+1=2Snn,

故{Snn}是以2为公比的等比数列.

(2)由(1)知Sn+1n+1=4Sn-1n-1 =4ann+1(n2),

于是Sn+1=4(n+1)Sn-1n-1=4an(n2).

又a2=3S1=3,故S2=a1+a2=4.

因此对于任意正整数n1,都有Sn+1=4an.

【点拨】①运用等比数列的基本公式,将已知条件转化为关于等比数列的特征量a1、q的方程是求解等比数列问题的常用方法之一,同时应注意在使 用等比数列前n项和公式时,应充分讨论公比q是否等于1;②应用定义判断数列是否是等比数列是最直接,最有依据的方法,也是通法,若判断一个数列是等比数列可用an+1an=q(常数)恒成立,也可用a2n+1 =anan+2 恒成立,若判定一个数列不是等比数列则只需举出反例即可,也可以用反证法.

【变式训练1】等比数列{an}中,a1=317,q=-12.记f(n)=a1a2an,则当f(n)最大时,n的值为()

A.7 B.8 C.9 D.10

【解析】an=317(-12)n-1,易知a9=31712561,a100,00,故f(9)=a1a2a9的值最大,此时n=9.故选C.

题型二 性质运用

【例2】在等比数列{an}中,a1+a6=33,a3a4=32,anan+1(nN*).

(1)求an;

(2)若Tn=lg a1+lg a2++lg an,求Tn.

【解析】(1)由等比数列的性质可知a1a6=a3a4=32,

又a1+a6=33,a1a6,解得a1=32,a6=1,

所以a6a1=132,即q5=132,所以q=12,

所以an=32(12)n-1=26-n .

(2)由等比数列的性质可知,{lg an}是等差数列,

因为lg an=lg 26-n=(6-n)lg 2,lg a1=5lg 2,

所以Tn=(lg a1+lg an)n2=n(11-n)2lg 2.

【点拨】历年高考对性质考查较多,主要是利用等积性,题目小而巧且背景不断更新,要熟练掌握.

【变式训练2】在等差数列{an}中,若a15=0,则有等式a1+a2++an=a1+a2++a29-n(n29,nN*)成立,类比上述性质,相应地在等比数列{bn}中,若b19=1,能得到什么等式?

【解析】由题设可知,如果am=0,在等差数列中有

a1+a2++an=a1+a2++a2m-1-n(n2m-1,nN*)成立,

我们知道,如果m+n=p+q,则am+an=ap+aq,

而对于等比数列{bn},则有若m+n=p+q,则aman=apaq,

所以可以得出结论:

若bm=1,则有b1b2bn=b1b2b2m-1-n(n2m-1,nN*)成立.

在本题中则有b1b2bn=b1b2b37-n(n37,nN*).

题型三 综合运用

【例3】设数列{an}的前n 项和为Sn,其中an0,a1为常数,且-a1,Sn,an+1成等差数列.

(1)求{an}的通项公式;

(2)设bn=1-Sn,问是否存在a1,使数列{bn}为等比数列?若存在,则求出a1的值;若不存在,说明理由.

【解析】(1)由题意可得2Sn=an+1-a1.

所以当n2时,有

两式相减得an+1=3an(n2).

又a2=2S1+a1=3a1,an0,

所以{an}是以首项为a1,公比为q=3的等比数列.

所以an=a13n-1.

(2)因为Sn=a1(1-qn)1-q=-12a1+12a13n,所以bn=1-Sn=1+12a1-12a13n.

要使{bn}为等比数列,当且仅当1+12a1=0,即a1=-2,此时bn=3n.

所以{bn}是首项 为3,公比为q=3的等比数列.

所以{bn}能为等比数列,此时a1=-2.

【变式训练3】已知命题:若{an}为等 差数列,且am=a,an=b(m0,nN*)为等比数列,且bm=a,bn=b(m

【解析】n-mbnam.

总结提高

1.方程思想,即等比数列{an}中五个量a1,n,q,an,Sn,一般可知三求二,通过求和与通项两公式列方程组求解.

2.对于已知数列{an}递推公式an与Sn的混合关系式,利用公式an=Sn-Sn-1(n2),再引入辅助数列,转化为等比数列问题求解.

3.分类讨论思想:当a10,q1或a10,00,01时,{an}为递减数列;q0时,{an}为摆动数列;q=1时,{an}为常数列.

6.4 数列求和

典例精析

题型一 错位相减法求和

【例1】求和:Sn=1a+2a2+3a3++nan.

【解 析】(1)a=1时,Sn=1+2+3++n=n(n+1)2.

(2)a1时,因为a0,

Sn=1a+2a2+3a3++nan,①

1aSn=1a2+2a3++n-1an+nan+1.②

由①-②得(1-1a)Sn=1a+1a2++1an-nan+1=1a(1-1an)1-1a-nan+1,

所以Sn=a(an-1)-n(a-1)an(a-1)2.

综上所述,Sn=

【点拨】(1)若数列{an}是等差数列,{bn}是等比数列,则求数列{anbn}的前n项和时,可采用错位相减法;

(2)当等比数列公比为字母时,应对字母是否为1进行讨论;

(3)当将Sn与qSn相减合并同类项时,注意错位及未合并项的正负号.

【变式训练1】数列{2n-32n-3}的前n项和为()

A.4-2n-12n-1 B.4+2n-72n-2 C.8-2n+12n-3 D.6-3n+22n-1

【解析】取n=1,2n-32n-3=-4.故选C.

题型二 分组并项求和法

【例2】求和Sn=1+(1+12)+(1+12+14)++(1+12+14++12n-1).

【解析】和式中第k项为ak =1+12+14++12k-1=1-(12)k1-12=2(1-12k).

所以Sn=2[(1-12)+(1-122)++(1-12n)]

= -(12+122++12n)]

=2[n-12(1-12n)1-12]=2[n-(1-12n)]=2n-2+12n-1.

【变式训练2】数列1, 1+2, 1+2+22,1+2+22+23,,1+2+22++2n-1,的前n项和为()

A.2n-1 B.n2n-n

C.2n+1-n D.2n+1-n-2

【解析】an=1+2+22++2n-1=2n-1,

Sn=(21-1)+(22-1)++(2n-1)=2n+1-n-2.故选D.

题型三 裂项相消法求和

【例3】数列{an}满足a1=8,a4=2,且an+2-2an+1+an=0 (nN*).

(1)求数列{an}的通项公式;

(2)设bn=1n(14-an)(nN*),Tn=b1+b2++bn(nN*),若对任意非零自然数n,Tnm32恒成立,求m的最大整数值.

【解析】(1)由an+2-2an+1+an=0,得an+2-an+1=an+1-an,

从而可知数列{an}为等差数列,设其公差为d,则d=a4-a14-1=-2,

所以an=8+(n-1)(-2)=10-2n.

(2)bn=1n(14-an)=12n(n+2)=14(1n-1n+2),

所以Tn=b1+b2++bn=14[(11-13)+(12-14)++(1n-1n+2)]

=14(1+12-1n+1-1n+2)=38-14(n+1)-14(n+2)m32 ,

上式对一切nN*恒成立.

所以m12-8n+1-8n+2对一切nN*恒成立.

对nN*,(12-8n+1-8n+2)min=12-81+1-81+2=163,

所以m163,故m的最大整数值为5.

【点拨】(1)若数列{an}的通项能转化为f(n+1)-f(n)的形式,常采用裂项相消法求和.

(2)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项.

【变式训练3】已知数列{an},{bn}的前n项和为An,Bn,记cn=anBn+bnAn-anbn(nN*),则数列{cn}的前10项和为()

A.A10+B10 B.A10+B102 C.A10B10 D.A10B10

【解析】n=1,c1=A1B1;n2,cn=AnBn-An-1Bn-1,即可推出{cn}的前10项和为A10B10,故选C.

总结提高

1.常用的 基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征联想相应的求和方法既是根本,也是关键.

2.数列求和实质就是求数列{Sn}的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.

6.5 数列的综合应用

典例精析

题型一 函数与数列的综合问题

【例1】已知f(x)=logax(a0且a1),设f(a1),f(a2),,f(an)(nN*)是首项为4,公差为2的等差数列.

(1)设a是常数,求证:{an}成等比数列;

(2)若bn=anf(an),{bn}的前n项和是Sn,当a=2时,求Sn.

【解析】(1)f(an)=4+(n-1)2=2n+2,即logaan=2n+2,所以an=a2n+2,

所以anan-1=a2n+2a2n=a2(n2)为定值,所以{an}为等比数列.

(2)bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2,

当a=2时,bn=(2n+2) (2)2n+2=(n+1) 2n+2,

Sn=223+324+425++(n+1 ) 2n+2,

2Sn=224+325++n2n+2+(n+1)2n+3,

两式相减得

-Sn=223+24+25++2n+2-(n+1)2n+3=16+24(1-2n-1)1-2-(n+1)2n+3,

所以Sn=n2n+3.

【点拨】本例是数列与函数综合的基本题型之一,特征是以函数为载体构建数列的递推关系,通过由函数的解析式获知数列的通项公式,从而问题得到求解.

【变式训练1】设函数f(x)=xm+ax的导函数f(x)=2x+1,则数列{1f(n)}(nN*)的前n项和是()

A.nn+1 B.n+2n+1 C.nn+1 D.n+1n

【解析】由f(x)=mxm-1+a=2x+1得m=2,a=1.

所以f(x)=x2+x,则1f(n)=1n(n+1)=1n-1n+1.

所以Sn=1-12+12-13+13-14++1n-1n+1=1-1n+1=nn+1.故选C.

题型二 数列模型实际应用问题

【例2】某县位于沙漠地带,人与自然长期进行着顽强的斗争,到20xx年底全县的绿化率已达30%,从20xx年开始,每年将出现这样的局面:原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化.

(1)设全县面积为1,20xx年底绿化面积为a1=310,经过n年绿化面积为an+1,求证:an+1=45an+425;

(2)至少需要多少年(取整数)的努力,才能使全县的绿化率达到60%?

【解析】(1)证明:由已知可得an 确定后,an+1可表示为an+1=an(1-4%)+(1-an)16%,

即an+1=80%an+16%=45an+425.

(2)由an+1=45an+425有,an+1-45=45(an-45),

又a1-45=-120,所以an+1-45=-12(45)n,即an+1=45-12(45)n,

若an+135,则有45-12(45)n35,即(45)n-112,(n-1)lg 45-lg 2,

(n-1)(2lg 2-lg 5)-lg 2,即(n-1)(3lg 2-1)-lg 2,

所以n1+lg 21-3lg 24,nN*,

所以n取最小整数为5,故至少需要经过5年的努力,才能使全县的绿化率达到60%.

【点拨】解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题.

【变式训练2】规定一机器狗每秒钟只能前进或后退一步,现程序设计师让机器狗以前进3步,然后再后退2步的规律进行移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P(n)表示第n秒时机器狗所在的位置坐标,且P(0)=0,则下列结论中错误的是()

A.P(2 006)=402 B.P(2 007)= 403

C.P(2 008)=404 D.P(2 009)=405

【解析】考查数列的应用.构造数列{Pn},由题知P(0)=0,P(5)=1,P(10)=2,P(15)=3.所以P(2 005)=401,P(2 006)=401+1=402,P(2 007)=401+1+1=403,P(2 008)=401+

3=404,P(2 009)=404-1=403.故D错.

题型三 数列中的探索性问题

【例3】{an},{bn}为两个数列,点M(1,2),An(2,an),Bn(n-1n,2n)为直角坐标平面上的点.

(1)对nN*,若点M,An,Bn在同一直线上,求数列{an}的通项公式;

(2)若数列{bn}满足log2Cn=a1b1+a2b2++anbna1+a2++an,其中{Cn}是第三项为8,公比为4的等比数列,求证:点列(1,b1),(2,b2),,(n,bn)在同一直线上,并求此直线方程.

【解析】(1)由an-22-1=2n-2n-1n-1,得an=2n.

(2)由已知有Cn=22n-3,由log2Cn的表达式可知:

2(b1+2b2++nbn)=n(n+1)(2n-3),①

所以2[b1+2b2++(n-1)bn-1]=(n-1)n(2n-5).②

①-②得bn=3n-4,所以{bn}为等差数列.

故点列(1,b1),(2,b2),,(n,bn)共线,直线方程为y=3x-4.

【变式训练3】已知等差数列{an}的首项a1及公差d都是整数,前n项和为Sn(nN*).若a11,a43,S39,则通项公式an=.

【解析】本题考查二元一次不等式的整数解以及等差数列的通项公式.

由a11,a43,S39得

令x=a1,y=d得

在平面直角坐标系中画出可行域如图所示.符合要求的整数点只有(2,1),即a1=2,d=1.所以an=2+n-1=n+1.故答案填n+1.

总结提高

1.数列模型应用问题的求解策略

(1)认真审题,准确理解题意;

(2)依据问题情境,构造等差、等比数列,然后应用通项公式、前n项和公式以及性质求解,或通过探索、归纳构造递推数列求解;

(3)验证、反思结果与实际是否相符.

2.数列综合问题的求解策略

(1)数列与函数综合问题或应用数学思想解决数列问题,或以函数为载体构造数列,应用数列的知识求解;

(2)数列的几何型综合问题,探究几何性质和规律特征建立数列的递推关系式,然后求解问题.

篇6:高三数学教案

教学目标:

结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学重点:

掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学过程

一、复习

二、引入新课

1.假言推理

假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。

(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。

(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。

2.三段论

三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。

3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。

(1)对称性关系推理是根据关系的对称性进行的推理。

(2)反对称性关系推理是根据关系的反对称性进行的推理。

(3)传递性关系推理是根据关系的传递性进行的推理。

(4)反传递性关系推理是根据关系的反传递性进行的推理。

4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。

オネ耆归纳推理可用公式表示如下:

オS1具有(或不具有)性质P

オS2具有(或不具有)性质P……

オSn具有(或不具有)性质P

オ(S1S2……Sn是S类的所有个别对象)

オニ以,所有S都具有(或不具有)性质P

オタ杉,完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;(2)被断定的个别对象是该类的全部个别对象。

小结:本节课学习了演绎推理的基本模式.

篇7:高三数学教案

1.导数概念及其几何意义

(1)了解导数概念的实际背景;

(2)理解导数的几何意义.

2.导数的运算

(1)能根据导数定义,求函数y=c(c为常数),y=x,y=x2,y=x3,y= ,y= 的导数;

(2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.

3.导数在研究函数中的应用

(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次);

(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).

4.生活中的优化问题

会利用导数解决某些实际问题.

5.定积分与微积分基本定理

(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念;

(2)了解微积分基本定理的含义. 本章重点:

1.导数的概念;

2.利用导数求切线的斜率;

3.利用导数判断函数单调性或求单调区间;

4.利用导数求极值或最值;

5.利用导数求实际问题最优解.

本章难点:导数的综合应用. 导数与定积分是微积分的核心概念之一,也是中学选学内容中较为重要的知识之一.由于其应用的广泛性,为我们解决有关函数、数列问题提供了更一般、更有效的方法.因此,本章知识在高考题中常在函数、数列等有关最值不等式问题中有所体现,既考查数形结合思想,分类讨论思想,也考查学生灵活运用所学知识和方法的能力.考题可能以选择题或填空题的形式来考查导数与定积分的基本运算与简单的几何意义,而以解答 题的形式来综合考查学生的分析问题和解决问题的能力.

知识网络

3 .1 导数的概念与运算

典例精析

题型一 导数 的概念

【例1】 已知函数f(x)=2ln 3x+8x,

求 f(1-2Δx)-f(1)Δx的值.

【解析】由导数的定义知:

f(1-2Δx)-f(1)Δx=-2 f(1-2Δx)-f(1)-2Δx=-2f′(1)=-20.

【点拨】导数的实质是求函数值相对于自变量的变化率,即求当Δx→0时,平均变化率ΔyΔx的极限.

【变式训练1】某市在一次降雨过程中,降雨量y(mm)与时间t(min)的函数关系可以近似地表示为f(t)=t2100,则在时刻t=10 min的降雨强度为( )

A.15 mm/min B.14 mm/min

C.12 mm/min D.1 mm/min

【解析】选A.

题型二 求导函数

【例2】 求下列函数的导数.

(1)y=ln(x+1+x2);

(2)y=(x2-2x+3)e2x;

(3)y=3x1-x.

【解析】运用求导数公式及复合函数求导数法则.

(1)y′=1x+1+x2(x+1+x2)′

=1x+1+x2(1+x1+x2)=11+x2.

(2)y′=(2x-2)e2x+2(x2-2x+3)e2x

=2(x2-x+2)e2x.

(3)y′=13(x1-x 1-x+x(1-x)2

=13(x1-x 1(1-x)2

=13x (1-x)

【变式训练2】如下图,函数f(x)的图象是折线段ABC,其中A、B、C的坐标分别为(0,4),(2,0),(6,4),则f(f(0))= ; f(1+Δx)-f(1)Δx= (用数字作答).

【解析】f(0)=4,f(f(0))=f(4)=2,

由导数定义 f(1+Δx)-f(1)Δx=f′(1).

当0≤x≤2时,f(x)=4-2x,f′(x)=-2,f′(1)=-2.

题型三 利用导数求切线的斜率

【例3】 已知曲线C:y=x3-3x2+2x, 直线l:y=kx,且l与C切于点P(x0,y0) (x0≠0),求直线l的方程及切点坐标.

【解析】由l过原点,知k=y0x0 (x0≠0),又点P(x0,y0) 在曲线C上,y0=x30-3x20+2x0,

所以 y0x0=x20-3x0+2.

而y′=3x2-6x+2,k=3x20-6x0+2.

又 k=y0x0,

所以3x20-6x0+2=x20-3x0+2,其中x0≠0,

解得x0=32.

所以y0=-38,所以k=y0x0=-14,

所以直线l的方程为y=-14x,切点坐标为(32,-38).

【点拨】利用切点在曲线上,又曲线在切点处的切线的斜率为曲线在该点处的导数来列方程,即可求得切点的坐标.

【变式训练3】若函数y=x3-3x+4的切线经过点(-2,2),求此切线方程.

【解析】设切点为P(x0,y0),则由

y′=3x2-3得切线的斜率为k=3x20-3.

所以函数y=x3-3x+4在P(x0,y0)处的切线方程为

y-y0=(3x20-3)(x-x0).

又切线经过点(-2,2),得

2-y0=(3x20-3)(-2-x0),①

而切点在曲线上,得y0=x30-3x0+4, ②

由①②解得x0=1或x0=-2.

则切线方程为y=2 或 9x-y+20=0.

总结提高

1.函数y=f(x)在x=x0处的导数通常有以下两种求法:

(1) 导数的定义,即求 ΔyΔx= f(x0+Δx)-f(x0)Δx的值;

(2)先求导函数f′(x),再将x=x0的值代入,即得f′(x0)的值.

2.求y=f(x)的导函数的几种方法:

(1)利用常见函数的导数公式;

(2)利用四则运算的导数公式;

(3)利用复合函数的求导方法.

3.导数的几何意义:函数y=f(x)在x=x0处的导数f′(x0),就是函数y=f(x)的曲线在点P(x0,y0)处的切线的斜率.

篇8:高三数学教案

一. 教学设计理念

数学教学是数学活动的教学,是师生交往、互动、共同发展的过程。有效的数学教学应当从学生的生活经验和已有的知识水平出发,向他们提供充分地从事数学活动的机会,在活动中激发学生的学习潜能,促使学生在自主探索与合作交流的过程中真正理解和掌握基本的数学知识、技能和思想方法。提高解决问题的能力,并进一步使学生在意志力、自信心、理性精神等情感、态度方面都得到良好的发展。

二.对教学内容的认识

1.教材的地位和作用

本节课是在学生学习过“一百万有多大”之后,继续研究日常生活中所存在的较小的数,进一步发展学生的数感,并在学完负整数指数幂的运算性质的基础上,尝试用科学记数法来表示百万分之一等较小的数。学生具备良好的数感,不仅对于其正确理解数据所要表达的信息具有重要意义,而且对于发展学生的统计观念也具有重要的价值。

2.教材处理

基于设计理念,我在尊重教材的基础上,适时添加了“银河系的直径”这一问题,以向学生渗透辩证的研究问题的思想方法,帮助学生正确认识百万分之一。

通过本节课的教学,我力争达到以下教学目标:

3. 教学目标

(1)知识技能:

借助自身熟悉的事物,从不同角度来感受百万分之一,发展学生的数感。能运用科学记数法来表示百万分之一等较小的数。

(2)数学思考:

通过对较小的数的问题的学习,寻求科学的记数方法。

(3)解决问题:

能解决与科学记数有关的实际问题。

(4)情感、态度、价值观:

使学生体会科学记数法的科学性和辩证的研究问题的思想方法。培养学生的合作交流意识与探究精神。

4. 教学重点与难点

根据教学目标,我确定本节课的重点、难点如下:

重点:对较小数据的信息做合理的解释和推断,会用科学记数法来表示绝对值较小的数。

难点:感受较小的数,发展数感。

三.教法、学法与教学手段

1.教法、学法:

本节课的教学对象是七年级的学生,这一年级的学生对于周围世界和社会环境中的实际问题具有越来越强烈的兴趣。他们对于日常生活中一些常见的数据都想尝试着来加以分析和说明,但又缺乏必要的感知较大数据或较小数据的方法及感知这些数据的活动经验。

因此根据本节课的教学目标、教学内容,及学生的认知特点,教学上以“问题情境——设疑诱导——引导发现——合作交流——形成结论和认识”为主线,采用“引导探究式”的教学方法。学生将主要采用“动手实践——自主探索——合作交流”的学习方法,使学生在直观情境的观察和自主的实践活动中获取知识,并通过合作交流来深化对知识的理解和认识。

2.教学手段:

1.采用现代化的教学手段——多媒体教学,能直观、生动地反映问题情境,充分调动学生学习的积极性。

2.以常见的生活物品为直观教具,丰富了学生感知认识对象的途径,使学生对百万分之一的认识更贴近生活。

四.教学过程

(一).复习旧知,铺垫新知

问题1:光的速度为300 000km/s

问题2:地球的半径约为6 400km

问题3:中国的人口约为1300 000 000人

(十).教学设计说明

本节课我以贴近学生生活的数据及问题背景为依托,使学生学会用数学的方法来认识百万分之一,丰富了学生对数学的认识,提高了学生应用数学的能力,并为培养学生的终身学习奠定了基础。在授课时相信会有一些预见不到的情况,我将在课堂上根据学生的实际情况做相应的处理。

篇9:高三数学教案

典例精析

题型一 求函数f(x)的单调区间

【例1】已知函数f(x)=x2-ax-aln(x-1)(a∈R),求函数f(x)的单调区间.

【解析】函数f(x)=x2-ax-aln(x-1)的定义域是(1,+∞).

f′(x)=2x-a-ax-1=2x(x-a+22)x-1,

①若a≤0,则a+22≤1,f′(x)=2x(x-a+22)x-1>0在(1,+∞)上恒成立,所以a≤0时,f(x)的增区间为(1,+∞).

②若a>0,则a+22>1,

故当x∈(1,a+22]时,f′(x)=2x(x-a+22)x-1≤0;

当x∈[a+22,+∞)时,f′(x)=2x(x-a+22)x-1≥0,

所以a>0时,f(x)的减区间为(1,a+22],f(x)的增区间为[a+22,+∞).

【点拨】在定义域x>1下,为了判定f′(x)符号,必须讨论实数a+22与0及1的大小,分类讨论是解本题的关键.

【变式训练1】已知函数f(x)=x2+ln x-ax在(0,1)上是增函数,求a的取值范围.

【解析】因为f′(x)=2x+1x-a,f(x)在(0,1)上是增函数,

所以2x+1x-a≥0在(0,1)上恒成立,

即a≤2x+1x恒成立.

又2x+1x≥22(当且仅当x=22时,取等号).

所以a≤22,

故a的取值范围为(-∞,22].

【点拨】当f(x)在区间(a,b)上是增函数时f′(x)≥0在(a,b)上恒成立;同样,当函数f(x)在区间(a,b)上为减函数时f′(x)≤0在(a,b)上恒成立.然后就要根据不等式恒成立的条件来求参数的取值范围了.

题型二 求函数的极值

【例2】已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.

(1)试求常数a,b,c的值;

(2)试判断x=±1是函数的极小值点还是极大值点,并说明理由.

【解析】(1)f′(x)=3ax2+2bx+c.

因为x=±1是函数f(x)的极值点,

所以x=±1是方程f′(x)=0,即3ax2+2bx+c=0的两根.

由根与系数的关系,得

又f(1)=-1,所以a+b+c=-1. ③

由①②③解得a=12,b=0,c=-32.

(2)由(1)得f(x)=12x3-32x,

所以当f′(x)=32x2-32>0时,有x<-1或x>1;

当f′(x)=32x2-32<0时,有-1

所以函数f(x)=12x3-32x在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.

所以当x=-1时,函数取得极大值f(-1)=1;当x=1时,函数取得极小值f(1)=-1.

【点拨】求函数的极值应先求导数.对于多项式函数f(x)来讲, f(x)在点x=x0处取极值的必要条件是f′(x)=0.但是, 当x0满足f′(x0)=0时, f(x)在点x=x0处却未必取得极 值,只有在x0的两侧f(x)的导数异号时,x0才是f(x)的极值点.并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.

【变式训练2】定义在R上的函数y=f(x),满足f(3-x)=f(x),(x-32)f′(x)<0,若x13,则有( )

A. f(x1)f(x2)

C. f(x1)=f(x2) D.不确定

【解析】由f(3-x)=f(x)可得f[3-(x+32)]=f(x+32),即f(32-x)=f(x+32),所以函数f(x)的图象关于x=32对称.又因为(x-32)f′(x)<0,所以当x>32时,函数f(x)单调递减,当x<32时,函数f(x)单调递增.当x1+x22=32时,f(x1)=f(x2),因为x1+x2>3,所以x1+x22>32,相当于x1,x2的中点向右偏离对称轴,所以f(x1)>f(x2).故选B.

题型三 求函数的最值

【例3】 求函数f(x)=ln(1+x)-14x2在区间[0,2]上的最大值和最小值.

【解析】f′(x)=11+x-12x,令11+x-12x=0,化简为x2+x-2=0,解得x1=-2或x2=1,其中x1=-2舍去.

又由f′(x)=11+x-12x>0,且x∈[0,2],得知函数f(x)的单调递增区间是(0,1),同理, 得知函数f(x)的单调递减区间是(1,2),所以f(1)=ln 2-14为函数f(x)的极大值.又因为f(0)=0,f(2)=ln 3-1>0,f(1)>f(2),所以,f(0)=0为函数f(x)在[0,2]上的最小值,f(1)=ln 2-14为函数f(x)在[0,2]上的最大值.

【点拨】求函数f(x)在某闭区间[a,b]上的最值,首先需求函数f(x)在开区间(a,b)内的极值,然后,将f(x)的各个极值与f(x)在闭区间上的端点的函数值f(a)、f(b)比较,才能得出函数f(x)在[a,b]上的最值.

【变式训练3】(20xx江苏)f(x)=ax3-3x+1对x∈[-1,1]总有f(x)≥0成立,则a= .

【解析】若x=0,则无论a为 何值,f(x)≥0恒成立.

当x∈(0,1]时,f(x)≥0可以化为a≥3x2-1x3,

设g(x)=3x2-1x3,则g′(x)=3(1-2x)x4,

x∈(0,12)时,g′(x)>0,x∈(12,1]时,g′(x)<0.

因此g(x)max=g(12)=4,所以a≥4.

当x∈[-1,0)时,f(x)≥0可以化为

a≤3x2-1x3,此时g′(x)=3(1-2x)x4>0,

g(x)min=g(-1)=4,所以a≤4.

综上可知,a=4.

总结提高

1.求函数单调区间的步骤是:

(1)确定函数f(x)的定义域D;

(2)求导数f′(x);

(3)根据f′(x)>0,且x∈D,求得函数f(x)的单调递增区间;根据f′(x)<0,且x∈D,求得函数f(x)的单调递减区间.

2.求函数极值的步骤是:

(1)求导数f′(x);

(2)求方程f′(x)=0的根;

(3)判断f′(x)在方程根左右的值的符号,确定f(x)在这个根处取极大值还是取极小值.

3.求函数最值的步骤是:

先求f(x)在(a,b)内的极值;再将f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.

篇10:高三数学教案

【教学目标】:

(1)知识目标:

通过实例,了解简单的逻辑联结词“且”、“或”的含义;

(2)过程与方法目标:

了解含有逻辑联结词“且”、“或”复合命题的构成形式,以及会对新命题作出真假的判断;

(3)情感与能力目标:

在知识学习的基础上,培养学生简单推理的技能。

【教学重点】:

通过数学实例,了解逻辑联结词“或”、“且”的含义,使学生能正确地表述相关数学内容。

【教学难点】:

简洁、准确地表述“或”命题、“且”等命题,以及对新命题真假的判断。

【教学过程设计】:

教学环节教学活动设计意图

情境引入问题:

下列三个命题间有什么关系?

(1)12能被3整除;

(2)12能被4整除;

(3)12能被3整除且能被4整除;通过数学实例,认识用用逻辑联结词“且”联结两个命题可以得到一个新命题;

知识建构归纳总结:

一般地,用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,

记作,读作“p且q”。

引导学生通过通过一些数学实例分析,概括出一般特征。

1、引导学生阅读教科书上的例1中每组命题p,q,让学生尝试写出命题,判断真假,纠正可能出现的逻辑错误。学习使用逻辑联结词“且”联结两个命题,根据“且”的含义判断逻辑联结词“且”联结成的新命题的真假。

2、引导学生阅读教科书上的例2中每个命题,让学生尝试改写命题,判断真假,纠正可能出现的逻辑错误。

归纳总结:

当p,q都是真命题时,是真命题,当p,q两个命题中有一个是假命题时,是假命题,

学习使用逻辑联结词“且”改写一些命题,根据“且”的含义判断原先命题的真假。

引导学生通过通过一些数学实例分析命题p和命题q以及命题的真假性,概括出这三个命题的真假性之间的一般规律。

篇11:高三数学教案

【学习目标】

一、过程目标

1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。

2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。

3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。

二、识技能目标

1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。

2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。

三、情感目标

1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣。

2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。

教学重点难点:

1对数函数的定义、图象和性质。

2对数函数性质的初步应用。

教学工具:多媒体

【学前准备】对照指数函数试研究对数函数的定义、图象和性质。

篇12:初一数学教案人教版

初一数学教案人教版1

一、学习目标:1.多项式除以单项式的运算法则及其应用.

2.多项式除以单项式的运算算理.

二、重点难点:

重 点: 多项式除以单项式的运算法则及其应用

难 点: 探索多项式与单项式相除的运算法则的过程

三、合作学习:

(一) 回顾单项式除以单项式法则

(二) 学生动手,探究新课

1. 计算下列各式:

(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

2. 提问:①说说你是怎样计算的 ②还有什么发现吗?

(三) 总结法则

1. 多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______

2. 本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

随堂练习: 教科书 练习

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.

E、多项式除以单项式法则

第三十四学时:14.2.1平方差公式

一、学习目标:1.经历探索平方差公式的过程.

2.会推导平方差公式,并能运用公式进行简单的运算.

二、重点难点

重 点:平方差公式的推导和应用

难 点: 理解平方差公式的结构特征,灵活应用平方差公式.

三、合作学习

你能用简便方法计算下列各题吗?

(1)× (2)998×1002

导入新课: 计算下列多项式的积.

(1)(x+1)(x-1) (2)(m+2)(m-2)

(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)

结论:两个数的和与这两个数的差的积,等于这两个数的平方差.

即:(a+b)(a-b)=a2-b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)

例2:计算:

(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)

随堂练习

计算:

(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)

(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)

五、小结:(a+b)(a-b)=a2-b2

初一数学教案人教版2

一、学习目标:1.完全平方公式的推导及其应用.

2.完全平方公式的几何解释.

二、重点难点:

重 点: 完全平方公式的推导过程、结构特点、几何解释,灵活应用

难 点: 理解完全平方公式的结构特征并能灵活应用公式进行计算

三、合作学习

Ⅰ.提出问题,创设情境

一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…

(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?

(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?

(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?

(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?

Ⅱ.导入新课

计算下列各式,你能发现什么规律?

(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;

(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;

(5)(a+b)2=________;(6)(a-b)2=________.

两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.

(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2

四、精讲精练

例1、应用完全平方公式计算:

(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2

例2、用完全平方公式计算:

(1)1022 (2)992

初一数学教案人教版3

一、学习目标:1.添括号法则.

2.利用添括号法则灵活应用完全平方公式

二、重点难点

重 点: 理解添括号法则,进一步熟悉乘法公式的合理利用

难 点: 在多项式与多项式的乘法中适当添括号达到应用公式的目的.

三、合作学习

Ⅰ.提出问题,创设情境

请同学们完成下列运算并回忆去括号法则.

(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)

去括号法则:

去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;

如果括号前是负号,去掉括号后,括号里的各项都要变号。

1.在等号右边的括号内填上适当的项:

(1)a+b-c=a+( ) (2)a-b+c=a-( )

(3)a-b-c=a-( ) (4)a+b+c=a-( )

2.判断下列运算是否正确.

(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。

五、精讲精练

例:运用乘法公式计算

(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

随堂练习:教科书练习

五、小结:去括号法则

六、作业:教科书习题

第三十七学时:14.3.1用提公因式法分解因式

一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式

二、重点难点

重 点: 能观察出多项式的公因式,并根据分配律把公因式提出来

难 点: 让学生识别多项式的公因式.

三、合作学习:

公因式与提公因式法分解因式的概念.

三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)

既ma+mb+mc = m(a+b+c)

由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。

四、精讲精练

例1、将下列各式分解因式:

(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.

例2把下列各式分解因式:

(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

(3) a(x-3)+2b(x-3)

通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.

首先找各项系数的____________________,如8和12的公约数是4.

其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的.

课堂练习

1.写出下列多项式各项的公因式.

(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab

2.把下列各式分解因式

(1)8x-72 (2)a2b-5ab

(3)4m3-6m2 (4)a2b-5ab+9b

(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2

五、小结:

总结出找公因式的一般步骤.:

首先找各项系数的大公约数,

其次找各项中含有的相同的字母,相同字母的指数取次数最小的.

注意:(a-b)2=(b-a)2

六、作业 1、教科书习题

2、已知2x-y=1/3 ,xy=2,求2x4y3-x3y4 3、(-2)+(-2)

4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3

第三十八学时:14.3.2 用“平方差公式”分解因式

一、学习目标:1.使学生了解运用公式法分解因式的意义;

2.使学生掌握用平方差公式分解因式

二、重点难点

重 点: 掌握运用平方差公式分解因式.

难 点: 将单项式化为平方形式,再用平方差公式分解因式;

学习方法:归纳、概括、总结

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法.

1.请看乘法公式

(a+b)(a-b)=a2-b2 (1)

左边是整式乘法,右边是一个多项式,把这个等式反过来就是

a2-b2=(a+b)(a-b) (2)

左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式.

a2-b2=(a+b)(a-b)

2.公式讲解

如x2-16

=(x)2-42

=(x+4)(x-4).

9 m 2-4n2

=(3 m )2-(2n)2

=(3 m +2n)(3 m -2n)

四、精讲精练

例1、把下列各式分解因式:

(1)25-16x2; (2)9a2- b2.

例2、把下列各式分解因式:

(1)9(m+n)2-(m-n)2; (2)2x3-8x.

补充例题:判断下列分解因式是否正确.

(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)?(a2-1).

五、课堂练习教科书练习

六、作业 1、教科书习题

2、分解因式:x4-16 x3-4x 4x2-(y-z)2

3、若x2-y2=30,x-y=-5求x+y

初一数学教案人教版4

一、学习目标:

1.使学生会用完全平方公式分解因式.

2.使学生学习多步骤,多方法的分解因式

二、重点难点:

重点: 让学生掌握多步骤、多方法分解因式方法

难点: 让学生学会观察多项式特点,恰当安排步骤,恰当地选用不同方法分解因式

三、合作学习

创设问题情境,引入新课

完全平方公式(a±b)2=a2±2ab+b2

讲授新课

1.推导用完全平方公式分解因式的公式以及公式的特点.

将完全平方公式倒写:

a2+2ab+b2=(a+b)2;

a2-2ab+b2=(a-b)2.

凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解

用语言叙述为:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方

形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.

由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.

练一练.下列各式是不是完全平方式?

(1)a2-4a+4; (2)x2+4x+4y2;

(3)4a2+2ab+ b2; (4)a2-ab+b2;

四、精讲精练

例1、把下列完全平方式分解因式:

(1)x2+14x+49; (2)(m+n)2-6(m +n)+9.

例2、把下列各式分解因式:

(1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy.

课堂练习: 教科书练习

补充练习:把下列各式分解因式:

(1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;

初一数学教案人教版5

教学目标

1.等腰三角形的概念. 2.等腰三角形的性质. 3.等腰三角形的概念及性质的应用.

教学重点: 1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.

教学难点:等腰三角形三线合一的性质的理解及其应用.

教学过程

Ⅰ.提出问题,创设情境

在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

有的三角形是轴对称图形,有的三角形不是.

问题:那什么样的三角形是轴对称图形?

满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.

我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.

Ⅱ.导入新课: 要求学生通过自己的思考来做一个等腰三角形.

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.

等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.

思考:

1.等腰三角形是轴对称图形吗?请找出它的对称轴.

2.等腰三角形的两底角有什么关系?

3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.

要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.

沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.

由此可以得到等腰三角形的性质:

1.等腰三角形的两个底角相等(简写成“等边对等角”).

2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).

由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).

如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

求:△ABC各角的度数.

分析:根据等边对等角的性质,我们可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形内角和为180°,就可求出△ABC的三个内角.

把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.

解:因为AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等边对等角).

设∠A=x,则 ∠BDC=∠A+∠ABD=2x,

从而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.

[师]下面我们通过练习来巩固这节课所学的知识.

Ⅲ.随堂练习:1.课本P51练习1、2、3. 2.阅读课本P49~P51,然后小结.

初一数学教案人教版

篇13:六年级数学教案人教版

六年级数学1

教学环节教学预设

一、问题情境

1.教师拿出自己的钥匙,并引出密码锁。分别说一说在什么地方或物品见过密码锁,见过几个数字的密码锁。

师:同学们,看老师手里拿的是什么?

生:钥匙。

师:对,这些都是用来开锁的钥匙。现实生活中,还有一种锁是不用钥匙的,你们知道是什么锁吗?

生:密码锁

师:谁知道什么地方或物品上经常用密码锁?

学生可能说出:保险柜、保险箱、旅行箱,等等。

师:看来同学们知道的不少,那谁来说一说你在什么东西上见过几个数字的密码锁

学生可能会说:

●我在旅行箱上见过三位数的密码锁。

●我在保险柜上见过六位数的密码锁。

●有的保险柜上的密码锁是8个数字。

2.提出兔博士的问题,师生交流。师:那谁知道旅行箱上为什么用密码锁,而不是钥匙锁呢?

学生可能会说:

●不怕丢钥匙。

●能够保密,别人不知道密码开不了,也不能仿制。

……

师:还有一个非常重要的原因是,用一定个数的数字组成密码,可以有许多变化,也就是可以组成许多密码,即使你知道了密码锁是几个数字,也很难判断是哪个密码。今天,我们就来研究一下数字密码锁的秘密。

板书:数字密码锁

二、探索密码锁

1.提出探索由两个数字组成多少个密码的问题,让学生分别写出0打头和1打头组成的密码。

师:现在,我们先来研究一下最简单的情况。假如数字锁的密码是由两个数字组成的,同学们想一想,用0、1、2、3、4、5、6、7、8、9这十个数字可以组成多少个密码?自己在本上写一写。用0打头时可以组成几个密码?

学生写密码,然后交流,得出:

用0打头,得到的10个密码是00、01、02、03、04、05、06、07、08、09

板书:0打头——10个

师:再用1打头,写一写可以组成几个密码?

学生写完后交流,得出:

用1打头,得到的10个密码是10、11、12、13、14、15、16、17、18、19

板书:1打头——10个

师:想一想,用2打头,可以组成几个密码?

生:10个。

2.分别提出:用3、4、5、6、7、8、9打头各能组成多少个?一共能组成多少个?在学生讨论的同时,得出:10×10=100(个)师:分别用3、4、5、6、7、8、9打头呢?

生:分别可以组成10个

师:一共10个数字,每一个数字打头都能组成10个密码,那一共可以组成多少个密码呢?

生:一共可以组成100个。

教师板书:10×10=100(个)

3.教师谈话并告诉学生用三个数字组成1000个密码,鼓励学生合作进行推算。师:刚才,我们通过写出几组密码,推算得出:用0到9的10个数字组成两个数字的密码,可以组成100个,那你们想知道,用这10个数字组成三个数字的密码,能组成多少个吗?

教师板书:10×10×10=1000(个)

师:可以组成1000个,你们知道是怎么推算出这个结果吗?同学合作,试着推算一下。

学生先自己推算,教师巡视,个别指导。

4.交流学生推算的方法,说明结果的准确性。给学生充分交流不同想法的机会。师:谁来汇报一下,你们是怎样推算的?

学生可能有以下说法:

●组成密码的数字都可以是0、1、2、3、4、5、6、7、8、9的十个数字。如果第一位数字是0,第二位数字是0,第三位数字是0、1、2、3、4、5、6、7、8、9,即:000、001、002、003、…009共10个密码。

如果第一位数字是0,第二位数字是1,第三位数字是0、1、2、3、4、5、6、7、8、9,即:010、011、012、013、…019共10个密码;……,所以第一位数字是0的密码共有10×10=100(个)

同样第一位数字是1,也有100个,第一位数字是2,也有100个,…第一位数字是9,也有100个,所以由三个数字组成的密码共有10×10×10=1000(个)

●用0、1、2、3、4、5、6、7、8、9可以组成100个两个数字的密码,在每个密码后面再加一个数字,都能组成10个密码,所以一共可以组成100×10=1000(个)

●用0、1、2、3、4、5、6、7、8、9十个数字中任一个数打头,后面都能组成(10×10)个两个数字的密码,所以一共可以组成10×10×10=1000(个)

只要学生能够大胆说出自己的推理过程,无论正确与否,教师首先给以鼓励,然后教师参与交流。小精灵儿童网

5.简单说明1000个密码与密码箱的关系,然后,让学生计算偷偷打开一个三个数字的密码箱需要多少时间。算完后交流。师:同学们用不同方法推算出了由三个数字组成的密码有1000个。大家知道,一个密码箱只有一个密码,也就是说,一个三个数字的密码锁只是这1000个密码中的一个。所以知道密码的人,很容易就打开了,不知道密码的人,要想偷打开箱子,可就难了,你们知道难在哪吗?

生:他得一个一个地试。

师:对,要一个一个地去试,这样就有可能要试1000次才能打开。请同学们算一算,如果每试一个密码要10秒钟,试1000次需要多长时间。

学生算完后,交流计算结果。

1000×10÷60÷60≈2.7(时)

6.告诉学生六个数字组成的密码有1000000个,让学生计算打开这样一个密码锁需要多少天。师:不知道密码,要想打开一个由三个数字组成的密码锁,就要花近3个小时的时间。重要的文件箱,都是由六个数字组成的密码锁,这样的密码有1000000个(板书:1000000个),不知道密码的人,想打开箱子所花的时间会更多。请同学们算一算,如果试一次的时间仍然是10秒,那么打开一个六位密码锁要用多少天呢?

学生汇报计算结果。

1000000×10÷60≈16666(分),

16666÷60≈277(时),

277÷24≈11(天)

师:可见,数字密码锁具有很强的安全性,因为打开一个不知道密码的锁会用很长时间,因此就增加了密码锁的安全性。所以人们常把贵重物品或重要文件,放在安全可靠的密码箱中,防止泄密或丢失。

三、汽车牌照问题

1.让学生自己读书并解答。交流时,说一说是怎样推算的。

师:刚才我们研究的数字密码问题,实际上是运用了我们数学上数的组成的知识请同学们打开书79页,看汽车牌照问题。试着计算可增加多少个车牌号?

学生试算,教师巡视。www.xjlet.com/

师:谁来说一说你是怎样想的?怎样计算的?

生:由四个数字组成的数码有10×10×10×10=10000(个),在这些数码前面增加一个字母,就可以增加1万个。

四、电话号码问题

提出电话号码问题,鼓励学生合作解决。交流时,给学生发表不同意见的机会。

师:随着人们生活水平的提高,不仅私人汽车发展得很快,全球的电话拥有量更以空前的速度增长着。请同学们解决一下书中79页电话号码增位问题。这个问题较难,试一试!可以同桌商量。

同桌讨论,试做。

师:谁来说一说你是怎样做的?结果是多少?

学生汇报情况,教师参与。

学生可能会出现以下结果:

●由五个数字组成的数码有10×10×10×10×10=100000(个),把10万个数码每个后面增加一个数字,可增加10个数码。所以,一共可以增加100万个,即:10000×10=1000000(个)

●电话号码没有0打头的,所以要去掉0打头的,所以,五位数的电话号码有10×10×10×10×9=90000(个),变成六位后是10×10×10×10×10×9=900000(个),增加了810000个。

六年级数学2

(一)课型定位:重点课 (二)本课分析(从单元分析入手) 本课在单元中的定位:教材在安排比的意义的学习时,分为三个阶段:比的意义、比的各部分名称、比与分数及除法的关系。比的意义教材是从日常生活中的相除关系的例子中引出的,通过对具体例子的讨论,明确了比的概念是建立在除法的意义基础之上的,揭示了比与除法之间的本质联系,是一种以“倍比”为基础的比较关系。

教材在介绍比的各部分名称时提出了比值的意义,它既是一个知识点,又有助于进一步理解比的意义。比与分数、除法的关系是本节课的又一教学要点,理解它们之间的关系,对后继学习特别是综合应用各种知识解决问题具有重要意义,同时也是理解比的后项不能为0的认知基础。

本课目标:

1-1、理解比的意义,掌握比各部分的名称和读写法,会求比值;

1-2、理解比与分数、除法的关系,会正确地写出比。

2、教学方法:比是在学生已经掌握了整数、小数、分数的基础知识,掌握一些常见的数量关系,掌握了代数初步知识,具备了运用这些知识解决简单的实际问题的能力上进行教学的。教学比时要联系学生已有的数学知识通过实例的分析与归纳,使学生理解比的意义,对一些已有的知识和常见的数量关系进行进一步的研究的基础上揭示比的关系。在认识比的基础上揭示比、分数、除法之间的联系。通过揭示比与除法之间的关系引出求比值的方法。比的性质是在学习了比、分数、除法之间的联系的基础上进行的。除法有商不变的性质,分数有分数的基本性质。

(三)教学重难点: 百分数的意义,百分数的读法写法。

(四)教学设计过程:

教学意图

教师活动

学生活动

媒体使用及目的

通过回忆旧知识引导出新的内容。

比较异同,抽象概念,加深理解。

结合算式理解意义。

看书自学培养能力。

揭示联系与区别,了解本质差别。

练习巩固。

一、复习:

出示准备题:

(1)航模小组有男生8人,女生5人。男生人数是女生人数的几倍?女生人数男生人数的几分之几?

(2)用3千克盐和10千克水,可以配制出一些盐水,如何比较盐和水的重量之间的倍数关系?

(3)一辆汽车3小时行驶180千米,平均每小时行驶多少千米?

(4)学校用750元买了2台同样的手风琴,平均每台手风琴多少元?

二、导入新课:

(一)认识比的意义。

1、以上几道题有什么相同之处?有什么差别?

2 、电脑出示:学雷锋小组有男生6人,女生5人。

(1)根据这两个条件,请提出一个简单的问题,对题目中的两个数量进行比较。

(2)我们那用减法可以比较两个数量的差,但是在实际生活和生产当中,还经常运用别的方法对两个数量进行比较,这就是我们今天学习的内容。板书:比的意义

(3)电脑出示本节课的教学内容。

(4)再看条件,补充一个问题,对两个数量进行比较:

板书:6÷5=6/5

5÷6=5/6

师述:6、5表示什么人数?结果表示什么?

这两题有什么方法对男生人数和女生人数进行比较?

(5)电脑出示:路程240千米,时间4小时,速度60千米

师述:请选则两个条件,补充一个问题,使能对两个数量用除法进行比较。

板书:240÷4=60千米

240÷60=40小时

题目中的数量各表示什么?

(6)比较以上4个算式的异同。

(7)我们可以用除法对两个数量进行比较 ,因此,我们把两个数相除又叫两个数的比。

板书:两个数相除又叫两个数的比

要注意什么?

(8)男生人数与女生人数相除,又叫男女生人数的比是6:5

学生说其余三个算式。

(9)相同数量的比结果表示是什么?

不同数量的比结果表示是什么?

(10)练习:

学生任选两个条件进行比。

单价和数量能比吗?

按点:

1、“神舟”六号飞行的大约总航程和飞行的大约时间的比是( )。

A、325:116

B、116:325

C、77:116

2、“神舟”六号飞行的大约时间和绕地球圈数的比是(  )。

A、77:116

B、116:325

C、116:77

3、买3支钢笔6元,钢笔的总价和数量的比是( )比( )。

A、6  3

B、3  6

4、小华3天看书100页,小华看书的页数与天数的比是()比()。

A、100 3

B、3  100

(二)认识比的写法及各部分的名称。

我们知道了什么是比,怎样写比,有几种形式?

板书:6:5或6/5

1、把黑板上的除法算式改写成比的形式。

2、看书55页了解比的各部分的名称。

板书:前项、比号、后项、比值

说明比值的结果可以是小数、分数和整数,比值的结果是一个数。

3、思考:比和比值有什么不同?

4、练习。

(三)认识比与除法的关系。

通过以上的计算我们发现比、除法、分数有密切的联系,请观察板书回答比、除法、分数的关系。

1、既然两个数相除又叫做两个数的比,那么除法与 比之间有什么联系?那么还与什么有联系?

2、看表了解除法、比、分数之间的联系与区别。

除法分数中对什么有规定?比呢?为什么?

板书:比的后项不能是0

四、今天我们学习了比的有关知识,下面进行练习。

基本练习p38/1

提高练习p39/3

五、小结。

男生人数是女生人数的1.6倍,女生人数男生人数的5/8。

3÷10

180÷3

750÷2

都是除法算式

表示的含义不同,男生比女生多几人?

男生人数是女生人数的几倍?女生人数男生人数的几分之几?

这两题有除法方法对男生人数和女生人数进行比较。

速度、路程、时间,都是除法算式,但是表示的含义不同。

相同数量的比结果表示是倍数关系,不同数量的比结果表示是一种新的数量。

比是两个数之间的倍数关系,比值是一个数。

根据表格呈现的内容回答。

除数,分母不能是0,同样,比的后项也不能是0。

1.正方形的边长与周长的比是()(1)1∶4 (2) 3∶12(3)4 ∶16(4) 0.25∶1

2.汽车3小时行驶180千米,汽车行使路程和所用时间的比:(   ) A180∶3B 60∶1 C 18 ∶0.3

3、绿化队种了200株国槐成活的有195棵,成活棵数与种植棵数的比是(  )

A 200:195  B 195:200

4、小华3天看书100页,小华看书的页数与天数的比是()A 3:100  B 100:3

5、杂技团的一种自行车有大小两个车轮。在大车轮转动15周的同时,小车轮转动47周,大车轮与小车轮在同一时间内转数的比是(  )A   15:47   B 47:15

1、“神舟”六号飞行的大约时间和绕地球圈数的比是( )

A、77:116 B、116:325 C、116:77

2、买3支钢笔6元,钢笔的总价和数量的比是(    )

1、6 :3       2、3 :6       3、2:1

3、“神舟”六号飞行的大约总航程和飞行的大约时间的比是()

A、325:116 B、116:325 C、77:116

一个圆柱体,底面直径与高相等,它的侧面积与表面积的比是(?)

A 3:2   B  2:3  C  4:9

(五)板书设计:

比的意义

比和除法有着密切的联系,两个数相除,又叫做这两个数的比。

60:21=60÷21= =

前项 后项 比值

比的前项除以后相,所得的商叫做比值。

(六)作业预设:

六年级数学3

分数乘法两步应用题

内容:课本第19页例3,完成做一做题和练习五的第6~10题。

目的:

1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法两步应用题。

2.培养分析能力,发展学生思维。

教学过程:

一、复习。

1.先说出下列各算式表示的意义,再口算出得数。

2.指出下面每组中的两个量,应把谁看作单位1。

(1)梨的筐数是苹果的 。

(2)梨的筐数的 和苹果的筐数相等。

(3)白羊只数的 等于黑羊的只数。

(4)白羊的只数相当于黑羊的 。

3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。

(1) 有40筐苹果,梨的筐数是苹果的 。( )?

(2) 梨的筐数是 和苹果的筐数相等,有40筐。( )?

(3) 有40只白羊,白羊的只数的 等于黑羊的只数。( )?

(4)白羊的只数相当于黑羊的 ,有40只黑羊。( )?

二、新授。

1.出示例3。

小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的是小华的 。小新储蓄了多少元?

(1)指名读题,说也已知条件和问题。

(2)怎样用线段图表示已知条件和问题。

先画一条线段,表示谁储蓄的钱数?为什么?

学生回答后,教师画线段图。

再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:

根据小华储蓄的钱数是小亮的 ,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。

然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:

根据小新储蓄的钱数是小华的 ,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。

(2)分析数量关系。

引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。

(3)确定每一步的算法,列式计算。

①求小华储蓄的钱数怎样想?

引导学生回答:根据小华储蓄的钱数是小亮的

把小亮的钱数看作单位1,就是求18的 是多少,所以用乘法计算。列式:

(元)

②求小新储蓄的钱数怎样想?

引导学生回答:根据小新储蓄的钱数是小华的 ,把小华的钱数看作单位1,就是求15的 是多少,所以也用乘法计算。列式:

(元)

把上面的分上步算式列成综合算式,该怎样列?

(元)

(4)检验,写答语。答:小新储蓄了10元。

2.做一做。

六年级数学4

理解百分数的意义,熟练地读、写百分数。

教学难点:

正确理解百分数和分数的联系与区别。

学法指导:

引探教学法教具

学具课件:

通案个案 教学过程:

一、联系生活导入新课。 交流收集到的百分数。请同学们把收集到的百分数展示给大家。 (1)羊毛衫羊毛的含量是90%。 (2)上衣腈纶的含量是23%。

(3)白酒中酒精的.含量是52%。…… 大家收集到百分数真不少,看来百分数在生活中应用很广泛,今天我们就来研究百分数。 二、合作探究学习新知

1、让学生交流已经知道百分数的哪些知识。 生:会读百分数、会写百分数…… 2、教师示范“%”和百分数的写法。(写百分号时,两个圆圈要写得小一些,以免和数字混淆)。

3、让学生写出几个喜欢的百分数,并读出来。 4、小组交流认识百分数的意义。 (1)教师提问:什么叫百分数呢?生答。

(表示一个数是另一个数的百分之几的数,叫做百分数,也可以叫做百分率或百分比。) (2)教师解释:百分数是一种特殊的倍比关系,它的后项是一种固定的数100,所以也叫百分率或百分比。

(3)讨论:百分数的分子可以是哪些数呢? 学生分组讨论,教师巡视指导。各组把讨论的结果在全班交流,教师小结。

5、讨论百分数和分数的联系及区别:联系是:都可以表示一个数是另一个数的几分之几,即都可以表示两个数的倍数关系。区别是:分数既可以表示两个数的倍数关系,又可以表示一个数,表示数时可以带单位名称。而百分数只表示两个数的倍数关系,它的后面不能写单位名称。

6、练习:下面的这些分数哪个能写成百分数。

(1)六一班的同学中男同学的人数占48/100。 (2)一个苹果重27/100千克。

(3)一堆煤重87/100吨,运走它的32/100

三、巩固应用熟练掌握 (1)完成P78“做一做

”(2)在规定时间内写出10个满意的百分数,结束后让学生说出实际写的个数是规定的百分之几。

四、课堂小结体验收获

五、课堂检测 (一)必做题

1、25%的计数单位是( ),它有( )个这样的单位。

2、分母是100的分数叫做百分数。( )

3、一杯牛奶重25%千克。( )

4、百分数的意义与分数的意义完全相同。( )

(二)选做题 选择合适的百分数填空。 2% 15% 120% 100% 0.0001%

1、今天上课,积极举手的同学占全班人数的( )

2、只要同学们认真学习,这个单元的及格率一定会达到( )

3、大海捞针的可能性是( )

【人教版高三数学教案】相关文章:

1.四年级数学教案人教版

2.小学数学教案人教版

3.人教版小学数学教案

4.人教版初中数学教案

5.二年级下册数学教案人教版

6.人教版五年级上册数学教案

7.人教版四年级下册数学教案

8.小学三年级数学教案人教版

9.人教版三年级上册数学教案

10.人教版三年级下册数学教案

下载word文档
《人教版高三数学教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部