欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>数学教案-相交线、平行线

数学教案-相交线、平行线

2022-08-29 08:42:07 收藏本文 下载本文

“好奇狗头”通过精心收集,向本站投稿了20篇数学教案-相交线、平行线,下面是小编为大家整理后的数学教案-相交线、平行线,仅供参考,大家一起来看看吧。

数学教案-相交线、平行线

篇1:数学教案-相交线、平行线

4.7   相交线

教学内容:课本第160―163页。主要内容为通过一个直线相交的课件的分析得到相交直线垂直的概念,并进一步探索垂足的概念和垂直的性质,同时探索了两条直线之间被第三条直线所截形成的角。

第一课时   4.7.1  垂线

教学目标

▲    知识与能力

1、分析和探索垂直的概念,体会垂直的性质。

2、理解过平面中一点有且只有一条垂线的性质。

▲    过程与方法

1、复习相关内容并引入新课。

2、通过对相关课件的分析,引出两条直线垂直以及相关的概念。

3、通过对例题图形的操作得到垂直的性质。

▲    情感、态度与价值观

通过对课件的分析,引导学生得出生垂直的定义,从而进一步培养学生探索精神和探索能力。

教学重、难点及突破

▲    重点

两条直线的垂直概念以及垂直的性质。

▲    难点

能充分理解垂直的定义,并能应用于解决实际问题。

▲    教学突破

本节内容较为形象化,涉及到的图形较多,所以建议教师在教学的'过程中能够充分的利用多媒体课件等教学的资源,能给喾学生较为形象的描述以帮助学生认识个中关系,从而使学生较深刻地理解本节内容。另外在本世中节建议教师对学生进行一些数学语言的训练,使学生能用数学语言描述图形的位置关系,从机时进一步培养学生用数学说话的习惯。

教学准备

▲教师准备    有关相交直线移动的课件

▲学生准备    预习相交线的概念

▲    教学步骤

教学流程设计

教师指导

学生活动

1.设问,引导学生回顾两直线相交的内容,并引入新课

2.通过对两相交直线的旋转的动画分析,从直观上得到两直线垂直的概念.

3.引导学生动手画得到垂 直的唯一性.

4.布置适当练习,巩固所学

1.认真地回顾两直线相交的知识,并随着教师的思路进入新课的学习.

2.通过对动画效果的分析,能总结出两直线垂直的概念.

3.通过亲手画图得到垂 直的唯一性.

4.完成练习,对所学内容有进一步的理解.

一、导入  新课

教师活动

学生活动

1、导入  :我们在以前学习了相交直线的知识,让我们一起回忆一下。

2、总结学生的回答,并做出适当补充,引入新课:今天我们进一步讨论相交线问题。

1、认真地回忆有关相交直线的内容,进一步提升认识,并在此基础上积极回答问题。

2、在教师作总结的过程中积极思考,并随着教师的思路进入新课。

二、对相交线的探索

教师活动

学生活动

1、  用电脑展示两直交线中的一条沿着交点旋转形成垂直的动画效果,引导学生观察并讨论得到垂直的概念,向学生渗透从几何直观到抽象概念的思维过程。

2、  引导学生完成课本第161页

“试一试”的内容,鼓励讨论在直线外或直线上一点能引该直线的几条生垂线?在此过程中培养学生动手操作解决问题的能力。

3、  让学生观察课本第161页图4.7.6,提问:点A与直线BC上各点连线中哪条最短?

4、  总结学生的回答,讲述点到直线距离概念,提醒学生注意垂线段与线的区别.

5、  组织学生观察讨论课本第162页”做一做”的内容,在此过程中通过小海龟的运动渗透旋转思想.

6、  练习:课本第162页练习1-3题.

7、  教师小结本内容

8、  布置作业 :课本第166页习题4.7第1题

1认真积极讨论,基础上发现图形中两条相交直线形成的四个角是直角,从而认识两条直线垂直的概念,能初步理解从几何直观到抽象概念的过程。

2.认真完成“试一试|”的内容并积极讨论,在此过程中发现在同一平面内,经过直线外或直线上一点有且只有一条垂线。

3.认真观察,动手测量,积极讨论可发现点A与直线BC各点连线中AB最短。

4.结合图形,认识点到直线距离的概念,掌握垂线与垂线段的区别。

5.通过做出图形和讨论能发现两条相交直线垂直可以看作一条直线是另一条直线绕点旋转900度得到的,从而理解旋转思想。

6.认真完成练习,巩固所学的知识。

7.学生完成作业

篇2:相交线平行线证明题

相交线平行线证明题

相交线平行线证明题

由于分成了2部分那么肯定E在正方形的边上,不然就没分成2部分拉,哈哈。

如果AE是直线,那么不用想拉,呵呵,直接E点就是C点了。

由于可以是曲线,所以才有了其他不同的选择,因为用线围图形的时候,相等面积时候,圆所需要的线最少,知道吧。

不过这里不需要求出来最小是多少,所以不管它是不是圆弧拉,但我们可以得到它与正方形边上的交点肯定没达到C,

第一种情况:E在CB或者CD上,显然正方形对称只考虑一种就可以了,不妨设它在CB上,先不管AE是什么样的.曲线,我们连接AE,肯定的知道AE是比线段AE长,(两点之间线段最断嘛)。

因为三角形ABE当中AE是斜边,所以很容易得到 :

曲线AE >线段AE > AB=2

第二:E在AB或者AD上的情况,同样只考虑在AB上,

也不管AE是什么东东,哈哈。

在AE曲线上任意取一点F,不与AE重复就是,连接AF,EF。肯定的,

曲线AE= 曲线AF +曲线EF > 线段AF +线段EF

三角形AEF中,AF+ EF>AB,不用说了吧。三角形两边和大于第三边。

所以

曲线AE >AB = 2

其实,有需要的时候,我们可以把AE的最小值算出来的,

在这里我就不罗嗦拉

2

证明:因为∠1与∠3互补

所以DE//BC

所以∠1=∠4(两直线平行,同位角相等)

所以∠2=∠4(对顶角相等)

所以∠1=∠2(等量代换)

(电脑打不出“因为”,“所以:,在写证明过程中,将因为和所以改成三个点的样子)

3

第二:E在AB或者AD上的情况,同样只考虑在AB上,

也不管AE是什么东东,哈哈。

在AE曲线上任意取一点F,不与AE重复就是,连接AF,EF。肯定的,

曲线AE= 曲线AF +曲线EF > 线段AF +线段EF

三角形AEF中,AF+ EF>AB,不用说了吧。三角形两边和大于第三边。

所以

曲线AE >AB = 2

其实,有需要的时候,我们可以把AE的最小值算出来的,

在这里我就不罗嗦拉

证明:因为∠1与∠3互补

所以DE//BC

所以∠1=∠4(两直线平行,同位角相等)

所以∠2=∠4(对顶角相等)

所以∠1=∠2(等量代换)

(电脑打不出”因为“,”所以:,在写证明过程中,将因为和所以改成三个点的样子)

篇3:相交线和平行线测试题

相交线和平行线测试题

一、概念部分:

1、下列正确说法的个数是

①同位角相等②对顶角相等

③等角的补角相等④两直线平行,同旁内角相等

A.1,B.2,C.3,D.4

2、下列说法正确的是()

A、相等的角是对顶角B、互补的两个角一定是邻补角

C、直角都相等D、两条直线被第三条直线所截,同位角相等

3.如图,与是对顶角的为().

4.如与是对顶角且互补,则它们两边所在的直线().

A.互相垂直B.互相平行

C.既不平行也不垂直D.不能确定

5.一个角的余角是它补角的,这个角的度数是().

6、一个角的余角是30,则这个角的大小是.

7、一个角与它的补角之差是20,则这个角的大小是.

8.如图,A、O、B共线,OM、ON分别是的平分线,则互余的角有()

A.2对B.3对C.4对D.5对

9.如图4,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=_____.

10、下列图中∠1和∠2是同位角的是()

A.⑴、⑵、⑶,B.⑵、⑶、⑷,

C.⑶、⑷、⑸,D.⑴、⑵、⑸

11.如图,中是同位角的有________,是内错角的有_________,是同旁内角的有__________.

12、如图11,下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角。其中正确的.个数是()

A、4个B、3个C、2个D、1个

二、平行线的判定和性质

1、如果a∥b,b∥c,那么a∥c,这个推理的依据是()

A、等量代换B、平行公理

C、两直线平行,同位角相等D、平行于同一直线的两条直线平行

2、如图⑨,DH∥EG∥EF,且DC∥EF,那么图

中和∠1相等的角的个数是()

A.2,B.4,C.5,D.6

3.如图,由已知条件推出的结论,正确的是().

A.由,可推出

B.由,可推出

C.由,可推出

D.由,可推出

4.如图,,则下列结论中,错误的是()

A.B.

C.D.

5、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的度数是()

A、第一次右拐50°,第二次左拐130°B、第一次左拐50°,第二次右拐50°

C、第一次左拐50°,第二次左拐130°D、第一次右拐50°,第二次右拐50°

6、张雷同学从A地出发沿北偏东500的方向行驶到B地,再由B地沿南偏西200的方向行驶到C地,则∠ABC的度数为()

A、400B、300C、200D、00

三、计算证明:

填写理由

1、已知:如图、BE//CF,BE、CF分别平分∠ABC和∠BCD

求证:AB//CD

证明:∵BE、平分∠ABC(已知)

∴∠1=∠

∵CF平分∠BCD()

∠2=∠()

∵BE//CF(已知)

∴∠1=∠2()

∴∠ABC=∠BCD()

即∠ABC=∠BCD

∴AB//CD()

2、如图,已知:∠BCF=∠B+∠F。

求证:AB//EF

证明:经过点C作CD//AB

∴∠BCD=∠B。

∵∠BCF=∠B+∠F,(已知)

∴∠()=∠F

∴CD//EF

∴AB//EF

3、如图,已知:∠3=125°,∠4=55°,∠1=118°,

求:∠2的度数。

4.如图,已知,求的度数.

5、已知,如图14,AC∥DF,∠1=∠A。求证:AB∥DE。

篇4:相交线与平行线教案

1. ▲平面上不相重合的两条直线之间的位置关系为_______或________

2. 两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互

为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。P3 例;P8 2题;P9 7题;P35 P35 3题

3. 两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线

叫做另外一条直线的垂线,他们的交点称为垂足。 4. 垂直三要素:垂直关系,垂直记号,垂足

5. 做直角三角形的高:两条直角边即是钝角三角形的`高,只要做出斜边上的高即可。

6. 做钝角三角形的高:最长的边上的高只要向最长边引垂线即可,另外两条边上的高过边所对的顶点向该边的延长线做垂线。

7. 垂直公理:过一点有且只有一条直线与已知直线垂直。

8. 垂线段最短;

9. 点到直线的距离:直线外一点到这条直线的垂线段的长度。

10. 两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。

P7 例、练习1

11.平行公理:过直线外一点有且只有一条直线与已知直线平行。

12. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c P17 4题

13.平行线的判定。P15 例 结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

P15 练习;P17 7题;P36 8题。

14.平行线的性质。P21 练习1,2;P23 6题

15. 命题:如果+题设,那么+结论。P22练习1

16. 真、假命题P24 11题;P37 12题

17.平移的性质P28归纳

篇5:《平行线与相交线》说课稿

《平行线与相交线》说课稿

尊敬的各位评委、亲爱的各位同仁:

我说课的内容是:义务教育课程标准实验教科书数学七年级下册第五章第36页的活动:你有多少种画平行线的方法。下面我将从以下四个方面对本课时的内容进行说明。

一、教材分析:

1、地位和作用你有多少种画平行线的方法?这一活动内容是在学完平行线的相关知识的基础上设计的,设计此活动课的目的不仅仅是知识回顾,更重要的是培养学生动手实验操作能力,还可以培养学生运用数学知识解决实际问题的能力,所以我认为本节数学活动课是一节非常好的教学素材,对今后的数学学习,对知识的渴求及对知识的求索方法都能起到无法估量的作用。

2、活动目标:根据对教材的研究和分析,综合学生的认知基础,我确定了下列活动目标:

1)理解并掌握两直线平行的条件,掌握两种以上最快捷的画平行线的方法。

2)培养学生动手实验,概括总结的能力,养成胆大心细的习惯,发散学生思维,增强学数学、用数学,探索奥妙的欲望。

3)鼓励学生大胆探索,科学分析,培养协作意识,建立自信心,体验成功感。

4)指导学生探究、应用的能力。

3、重难点确定及成因分析:重点:理解两直线平行的条件,掌握两种以上最快捷的画平行线的方法难点:探索新的画两直线平行的方法,并能简单说理。分析:平行线画法不仅锻炼学生实际动手能力,还可以复习本章多学的相关知识,因此,把它确定为本课时的重点。七年级学生自主探究,用已有的知识和能力探索出新的画两直线平行的方法有一定的难度,所以把它作为本课时的难点。

二、教法、学法

本节课借鉴了美国教育家杜威的“在做中学”的理论及“授之以鱼,不如授之以渔”的思想,我将主要采用“情景激趣,自主探究”法教学,由情景—操作—发散—应用形成,层层推进,有力地调动了学生思维的`积极性,把知识的体验过程化为亲身参与,动手实验,运用推广,进行实践的过程。

三、活动准备:

1、 学生自动分组,5-6人一组,自选组长。

2、 尺规、量角器、铅笔和纸四、活动设计本节课我将按以下四个环节来完成教学

(一) 情景激趣,导入实验5分钟

(二) 动手实验,探究创新25分钟

(三) 联系实际,铸就能力10分钟

(四) 归纳小结,体验感受5分钟这种分法环环紧扣,层层递进,过渡自然,有利于教法,学法的实施,教学目标的实现,能帮助学生理顺本节知识点,提高效率,活跃课堂气氛,也体现了活动课的特点。

四、 情景激趣,导入实验。

1、教师演示课件,依次展示铁轨,木工师傅用角尺画平行线,学校跑道、树林,这些平行线的例子,你知道是怎样画出来的吗?通过本节课的学习,你就能明白其中的道理,从而引出课题“你有多少种画平行线的方法”。 (设计意图)让学生体验所学内容与现实生活的密切联系,激发学生想画平行线的欲望。

2、教师提出问题,什么叫平行线?平行线有哪些性质?怎样判定两直线平行?让学生讨论后推举一人回答。 (设计意图)通过回顾平行线的性质,判定方法为探索画平行线的方法作好铺垫。

篇6:平行线与相交线美文

平行线与相交线美文

他们站在网络的平台上,相遇了,很平静的聊着,就像很熟悉的朋友一样,逐渐的熟悉了对方一些事,还是那么平静的聊着家常;渐渐的开始关心起对方来,似乎平静的湖面起了微微的波澜;渐渐的开始牵挂起对方,好似那湖面的波澜再次掀起来了,涌向心头;渐渐的思念起对方,就像波涛涌向那海岸,激荡起来。随着时间的流逝,他们的感情一步步的贴近,除了牵挂还是牵挂,除了思念还是思念,不再等待了,迫切希望见到对方,恰似一日不见如隔三秋,那渴望的心情无法用那美丽的文字所能表达的,带着激情来了,来了......

天公不作美,竟把他们相隔离在平行线上,只能遥想着,却不能相见,他们只能接受那感情的折磨,承受惩罚,他们只能承受着灼人的痛苦的思念,他们的心在被爱情洗礼着,尽管如此,也动摇不了那份真情,一直在做着痛苦的挣扎,尽管他们的心支离破碎,碎成一片片......他们还是执着的等着爱情奇迹的.出现,因他们一直坚信他们的爱情是坚不可摧的,是忠贞不渝的,因他们相信对方是深爱着自己,谁也割舍不下谁,因他们曾承诺不离不弃,正因这个信念,让他们在爱情的洗礼下还是执着的等着那平行线变成相交线,他们知道之所以现在还在平行线上,不是谁的错,是时间的错,错在现在还不是他们相见的时候,可他们要坚信,经久考研的爱情是牢固的,那爱情才是最幸福的真谛,不经风雨哪得见彩虹?

他们开始相信天意,相信冥冥之中, 相信那阵阵的心口绞痛和手指痉挛,都是彼此爱的感应。他说他在人群中找她很久了,找得很辛苦;她说她曾上一炷香期盼他,用一朵花开的时间等待他。他们承诺永远牵着对方的手不放开。

现在的他们都觉得自己是对方的镜子,说话的语气,为人的方式,还有对待生活的态度那么相近; 有时候又觉得自己就是和对方拼成圆的那段弧线。 困惑的问题、未知的领域、不得体的处理方式,可以相互讨论,取长补短。生活曾是那么默契,现在好似出了状况,虽然他们还在平行线之上艰难的行走着,但坚信总有一天他们的爱情会感动上苍,让他们走在相交线上,最后相携手走到爱情相交的一点上。

篇7:相交线与平行线测试题

相交线与平行线测试题

1.在同一平面内,两条直线有____________种位置关系,分别是____________,如果两条直线 不相交,那么这两条直线的位置关系一定是____________,记作____________.

2.如图,计划把河水引到水池A中 初中物理,可以先引AB⊥CD,垂足为B,然后沿AB开渠,则能使所开的渠最短,这样设计的依据是________________.

3.下面生活中的物体的运动情况可以看成平移的是 _________.

(1)摆动的钟摆,(2)在笔直的公路上行驶的汽车,(3)随风摆动的旗帜,(4)摇动的.大绳,(5)汽车玻璃上雨刷的运动,(6)从楼顶自由落下的球(球不旋转).

4.木工师傅用“丁”字尺(长、短两尺接成丁字,两尺的夹角是900),画出工件边缘的两条垂线(如图),则这两条垂线平行,理由是________________________.

篇8:平行线与相交线作文

平行线与相交线作文

依稀记得,那夜你的样子。你眼望星空,终于说出那句犹豫许久的话:“我们,究竟是平行线,还是相交线?”

平行线?相交线?我不知如何回答。只是苦笑一下,望着你有些失落与忧伤的表情,心里不禁涌起阵阵的酸涩。

我喜欢开玩笑,你也从不介意。你曾对我说:“你的玩笑让我觉得亲切,让我觉得你在乎我。”我心里高兴极了,我以为,我们会成为知已朋友;我以为,我们这段友谊会永远持续下去;我以为……

可是我错了,错得好离谱。当我收到那封带着浓浓绝交意味的信时,才真的意识到自己错了。你说,你很伤心。你说,我的`挖苦讽刺再也伤不到你,因为你的心就如冰山一样坚硬。你说,我们以后就做平行线好了……顿时,心如刀绞,眼泪不受控制地涌出眼眶。我委屈,明明玩笑一直是一样的,明明比以前还要在乎你,可为什么结果却是绝交……

我不知道当时是怎样控制住了眼泪,只觉得心很痛。在给你写的回信中,我说,不会相交的线叫做平行线。我说,平行线活得平安又枯燥。我说,我更喜欢相交线,因为它们相交。我说,也许我们的相交是个错误……

我将它递给你时,真的很想说:“原来我们的友谊如此脆弱。”却没说出口……

记得后来,你给我写了好多信,对我说了好多“对不起”。你说,你的那封信只是玩笑。你说,你不是有意伤我。你说,你不想失去这个朋友。你说,你不想和我做平行线……我看着你的信,只是叹气。后来给你写了很多回信,或长或短,内容都不一样,却始终有一句:我们应该保持距离,毕竟只是朋友。

又成了朋友,之间却有一层看不见,逾越不了的屏障。

“我们究竟是平行线,还是相交线?”低弱的声音把我从思绪中拉了回来。

“啊?”我正好对上了你的眼睛,那固执的眼神让我感觉不自在。我别过头,躲开你的视线,慢慢道:“我不知道,曾经的我们是相交线,可现在的我们,就像平行线,我不知道我们究竟是平行线还是相交线。抱歉,我回答不了。”

你眼里彻彻底底盛满了失望,苦笑道:“是啊!时间不早了,我要回去了。”转身便跑走了,望着你的背影,想了很久,终是没有想明白……

时间飞逝,现在的我已经明白了,相交线怎样,平行线又怎样?它们的差别只不过在于平行线永远不会相交。而相交线有一个交点,相交线相交过后,还会无限延长,延伸到比平行线还远。

篇9:数学教案-相交线、对顶角

教学建议

1.知识结构

2.重点和难点分析

(1)本节课的重点是对顶角的概念和性质,这些是重要的基础知识,在以后的学习中常常要用到,要求学生掌握.对顶角的概念是结合图形描述的,这样描述,便于学生在图形中辨认.教学中不必让学生背这些词句,而是让学生抓住概念的本质,教给学生在图形中如何辨认它们.辨认对顶角的要领是:首先要有两条直线相交构成四个角的前提条件,再找其中有公共顶点没有公共边(或不相邻)的两个角,就是对顶角.

(2)本节课的难点是对顶角性质的证明和书写格式.要证明两角相等,这对于刚学习推理证明的学生来说并非易事.教学时要引导学生回忆至今为止已经学过的关于两个角相等的定理,使学生自己联想到“同角的补角相等”这个定理,从而受到启发获得证明的思路.可先结合图形用文字语言叙述推理过程,然后再“翻译”成符号语言的几何推理格式.要特别注意使学生明确每一步推理的根据.

3.教法建议

(1)因为本节是由相交线的模型——用钉子固定的两根木条来引入的.所以教师要事先准备好教具,先让学生观察模型,对相交线建立感性认识,然后在从模型抽象出两条相交直线.或用我们提供的课件来引入本节课,激发学生的学习兴趣.

(2)教师讲完了对顶角的定义后,可以用以下方法让学生感受对顶角的特征,探索其性质.老师拿出提前准备好的剪刀,在讲台上演示.老师不停地变换剪刀的边所成的角,让学生思考,在剪刀的边所在的角中,哪些角是对顶角,哪些角是邻补角?让学生在变化中理解对顶角和邻补角的意义.

(3)本节课的内容适合启发式教学,教师可以先拿出相交线的模型,转动木条,观察角的变化,然后抽象出两条相交直线,再让学生观察四个角的特征,这四个角根据位置关系可以分几类,这两类角各有有什么特征?这些问题都要由老师设问、启发,学生经过观察、分析、归纳总结出来,让学生自己亲历一次发现的过程,有利于学生对对顶角、邻补角的概念和性质的理解.

教学设计示例

一、素质教育目标

(一)知识教学点

1.理解对顶角和邻补角的概念,能在图形中辨认.

2.掌握对顶角相等的性质和它的推证过程.

3.会用对顶角的性质进行有关的推理和计算.

(二)能力训练点

1.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.

2.通过对顶角件质的推理过程,培养学生的推理和逻辑思维能力.

(三)德育渗透点

从复杂图形分解为若干个基本图形的过程中,渗透化难为易的化归思想方法和方程思想.

(四)美育渗透点

通过实例,培养和提高学生的审美能力和审美标准;通过相交线,使学生进一步体会几何图形的简单美、对称美.

二、学法引导

1.教师教法:教具直观演示法启发引导、尝试研讨.

2.学生学法:动手动脑、积极参与、认真研讨、学会概括.

三、重点、难点及解决办法

(一)重点

(二)难点

在较复杂的图形中准确辨认对顶角和邻补角.

(三)疑点

对顶角、邻补角的图形识别.

(四)解决办法

强调图形的基本特征,指导学生逐步学会分解复杂图形、找出基本图形的方法.

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、三角尺、自制复合胶片、木条制成的相交直线的模型.

六、师生互动活动设计

1.通过实例创设情境,引导学生进入课题.

2.通过演示实验和学生讨论、总结对顶角、邻补角两个概念.

3.通过学生研讨、练习巩固完成性质的讲解.

4.通过学生总结完成课堂小结.

5.通过随堂练习,检测学生学习情况.

七、教学步骤

(一)明确目标

能在图形中正确辨认对顶角和邻补角,理解其概念,掌握其性质,并运用其进行推理计算.

(二)整体感知

通过对较复杂图形的认识和学习,逐步加深几何知识,培养学生逻辑思维能力和逻辑推理、表达能力.

(三)教学过程

创设情境,引入课题

投影打出本章的章前图(投影片1),然后引导学生观察,并回答问题.

学生活动:口答哪些道路是交错的,哪些道路是平行的.

教师导入  :图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.它们就是我们本章要研究的课题:

【板书】第二章  相交线、平行线

【教法说明】以立交桥为实例引出本章内容,目的是①通过实例,让学生了解相交线、平行线是我们日常生活中经常见到的;②通过画面,培养学生的空间想像能力;③通过画面,启发学生广泛地联想,让学生知道,相交线、平行线的概念是从实物中抽象出来的;④通过学生熟悉的事物,激发学生的学习兴趣.

学生活动:请学生举出现实空间里相交线、平行线的一些实例.

教师导入  :相交线、平行线在日常生活中经常见到,有着广泛应用,所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,从而引入本节课题.

【板制】2.1 相交线、对顶角

探究新知,讲授新课

教师演示:取两根木条ab,用钉子将它们钉在一起,并且能随意张开.固定水条a,绕钉子转动b,可以看到,b的位置变化了,ab所成的角a也随着变化.这说明两条直线相交的不同位置情况,与它们的交角大小有关.可以用它们所成的角来说明相对位置的各种情况.所以研究两条直线相交问题首先来研究两条直线相交得到的有公共顶点的四个角.这四个角都有一个公共顶点,其中有些有公共边,有些没有公共边,故我们把这些角分成两类:对顶角和邻补角.

【教法说明】演示相交线的模型,目的是使学生领会研究相交线为什么要研究它们相交所成的角.

1.对顶角和邻补角的概念

学生活动:观察右图,同桌讨论if与Z3有什么特点,然后,举手回答,教师统一学生观点并板书.

【板书】∠1与∠3是直线ABCD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.

学生活动:让学生找一找右图中还有没有对顶角,如果有,是哪两个角?

学生口答:∠2和∠4再也是对顶角.

紧扣对顶角定义强调以下两点:

(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.

(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.

反馈练习:投影显示(投影片2)

下列各图中,∠l和∠2是对顶角吗?为什么?(射线OA是活动的)

【教法说明】本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象,最后一个图形为下面讲部补角做铺垫。

学生活动:观察图2-l,∠1和∠2与对顶角相比,有什么相同点和不同点,从而得出邻补角的定义.

【板书】∠l和∠2也是直线AB、CD相交得到的,它们不仅有一个公共顶点O,还有一条公共边OA,像这样的两个角叫做邻补角.

学生活动:让学生找一找图2-1中还有没有其他邻补角,如果有,是哪些角.

学生口答:∠1和∠4,∠2和∠3,∠3和∠4都是邻补角.

【教法说明】把邻补角的概念与对顶角概念对比着讲解,便于掌握概念之间的联系与  区别,加深对概念的理解.

提出问题:如右图,∠1和∠2还是邻补角吗?为什么?

师:邻补角也可以看成是一条直线与端点在这条直线上的一条射线组成的两个角,由此可知,邻补角是有特殊位置关系的两个互补的角.右图这样的邻补角在图形中也是常见的.在这种情况下,只存在一对邻补角,而不存在对顶角,与两条直线相交所得的角不同.

教师演示:图中射线OC固定在一个位置不动,把∠1和∠2拉开,并且保持角的大小不变,如右图(投影片3).

提出问题:∠l和∠2的和是多少度?∠l和∠2还是邻补角吗?为什么?

学生活动:观察图形的变换,回答教师提出的问题,同桌可相互讨论.

【教法说明】此问题意在区别互为补角和互为邻补角的概念,演示活动投影片,有助于学生抓住概念的本质,比教师单纯地强调效果更好.

2.对顶角的性质

提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?

学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.

【教法说明】学生说出对顶角∠l=∠3后,启发学生再说出∠2=∠4,然后得出对顶角相等的性质.在学生理解推理思路的基础上,板书为几何符号推理的格式.对顶角的性质不难得出,放手让学生展开讨论,充分发挥学生的主动性,在活跃课堂气氛的同时,培养学生的创造思维能力

【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),

∴∠l=∠3(同角的补角相等).

注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.

或写成:∵∠1= 180°-∠2,∠3=180°-∠2(邻补角定义),

∴∠1=∠3(等量代换).

【教法说明】推得“对顶角相等”这个结论的过程,是课本中初次出现的一步推理,使学生了解推理可以写成“∵……∴……”的形式,并且每一步都要有根据,也就是括号里填的理由.这种推理的格式以后还要逐步渗透和训练,现在不要求自己会写推理过程,只要求学生能看明白就可以了,为以后证明打好基础。

尝试反馈,巩固练习

投影显示(投影片4)

【教法说明】本级统习是巩固对顶角和邻补角概念的,同时培养学生的识图能力.第1题是课本第59页练习第2题的变式,第2题是课本第59页练习第3题和“想一想”的综合.解决这类题目的关键是要善于从复杂图形中分离出基本图形.对顶角、邻补角的基本图形是两条直线相交,则三条直线相交的图形应分解为三个两条直线交于一点的图形.如:

为此,对顶角有 2×3=6个,邻补角的对数为 4×3=12个.第3、4题是有关的概念的综合训练,其中第4题意在区别互为补角和互为邻补角的概念.

投影显示(投影片5)

【教法说明】第1题是直接利用对顶角相等的性质得出,第2、3题是结合图形利用对顶角相等的性质,第4题是课本59负练习第4题,是两条直线相交的一种特殊情况,为下节课讲两直线互相垂直埋下伏笔.

变式训练,培养能力

投影显示(投影片6)

学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

解:∠3=∠1=40°(对顶角相等).

∠2=180°-40°=140°(邻补角定义).

∠4=∠2=140°(对顶角相等).

【教法说明】例题一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象更深刻.

学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.

变式1:把∠l=40°变为∠2-∠1=40°

变式 2:把∠1=40°变为∠2是∠l的3倍

变式3:把∠1=40°变为∠1 :∠2=2:9

变式4:把∠1=40°变为∠1=平角

【教法说明】学生自编开放性的题目,一是活跃课堂气氛;二是培养学生的开放思维能力和逆向思维能力.变式1、2、3均可建立方程或方程组求解,几何中计算角度和线段长度等问题常借助代数方程来解决.

(四)总结、扩展

角的名称

特征

性质

相同点

不同点

对顶角

①两条直线相交面成的角

②有一个公共顶点

③没有公共边

对顶角相等

都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。

对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个有的对顶角有一个,而一个角的邻补角有两个。

邻补角

①两条直线相交面成的角

②有一个公共顶点

③有一条公共边

邻补角互补

学生活动:表格中的结论均由学生自己口答填出.

【教法说明】课堂小结以提问形式,由学生自己讨论,系统归纳总结,以便培养学生的概括表达能力.

八、布置作业

(一)必做题

课本第69页习题 2.1A组第2题.

(二)思考题

课本第70页习题2.1A组第4题

【教法说明】作业 紧紧围绕着对顶角、邻补角的概念及对顶角性质.思考题是对顶角性质的一个应用实例,结合图形可以看出,活动指针的读数,就是两直线相交成一个角的度数,培养学生应用数学的意识.

(三)作业 答案

2.解:(1)∠AOD的对顶角是∠BOC,∠EOC的对顶角是∠DOF

(2)∠AOC的邻补角是∠AOD和∠BOC,∠EOB的邻补角是∠AOE和∠BOF.

(3)∠BOD=∠AOC=50°(对顶角相等),∠BOC=180°-50=130°(邻补角定义).

4.应用对顶角相等的性质测量角.

九、板书设计 

篇10:初一数学教案:相交线

初一数学教案:相交线

相交线

课型:新授课 备课人:徐新齐 审核人:霍红超

学习目标

1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛

2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角

重点、难点

重点:邻补角、对顶角的概念,对顶角性质与应用.

难点:理解对顶角相等的性质的探索.

教学过程

一、复习导入

教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.

学生欣赏图片,阅读其中的文字.

师生共同总结:我们生活的`世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.

二、自学指导

观察剪刀剪布的过程,引入两条相交直线所成的角

握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.

三、 问题导学

认识邻补角和对顶角,探索对顶角性质

(1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流.

∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.

∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.

( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.

(3).概括形成邻补角、对顶角概念.

有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.

四、典题训练

1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

2.:判断下列图中是否存在对顶角.

小结

篇11:数学教案-相交线、对顶角

教学建议

1.知识结构

2.重点和难点分析

(1)本节课的重点是对顶角的概念和性质,这些是重要的基础知识,在以后的学习中常常要用到,要求学生掌握.对顶角的概念是结合图形描述的,这样描述,便于学生在图形中辨认.教学中不必让学生背这些词句,而是让学生抓住概念的本质,教给学生在图形中如何辨认它们.辨认对顶角的要领是:首先要有两条直线相交构成四个角的前提条件,再找其中有公共顶点没有公共边(或不相邻)的两个角,就是对顶角.

(2)本节课的难点是对顶角性质的证明和书写格式.要证明两角相等,这对于刚学习推理证明的学生来说并非易事.教学时要引导学生回忆至今为止已经学过的关于两个角相等的定理,使学生自己联想到“同角的补角相等”这个定理,从而受到启发获得证明的思路.可先结合图形用文字语言叙述推理过程,然后再“翻译”成符号语言的几何推理格式.要特别注意使学生明确每一步推理的根据.

3.教法建议

(1)因为本节是由相交线的模型――用钉子固定的两根木条来引入的.所以教师要事先准备好教具,先让学生观察模型,对相交线建立感性认识,然后在从模型抽象出两条相交直线.或用我们提供的课件来引入本节课,激发学生的学习兴趣.

(2)教师讲完了对顶角的定义后,可以用以下方法让学生感受对顶角的特征,探索其性质.老师拿出提前准备好的剪刀,在讲台上演示.老师不停地变换剪刀的边所成的角,让学生思考,在剪刀的边所在的角中,哪些角是对顶角,哪些角是邻补角?让学生在变化中理解对顶角和邻补角的意义.

(3)本节课的内容适合启发式教学,教师可以先拿出相交线的模型,转动木条,观察角的变化,然后抽象出两条相交直线,再让学生观察四个角的特征,这四个角根据位置关系可以分几类,这两类角各有有什么特征?这些问题都要由老师设问、启发,学生经过观察、分析、归纳总结出来,让学生自己亲历一次发现的过程,有利于学生对对顶角、邻补角的概念和性质的理解.

教学设计示例

一、素质教育目标

(一)知识教学点

1.理解对顶角和邻补角的概念,能在图形中辨认.

2.掌握对顶角相等的性质和它的推证过程.

3.会用对顶角的性质进行有关的推理和计算.

(二)能力训练点

1.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.

2.通过对顶角件质的推理过程,培养学生的推理和逻辑思维能力.

(三)德育渗透点

从复杂图形分解为若干个基本图形的过程中,渗透化难为易的化归思想方法和方程思想.

(四)美育渗透点

通过实例,培养和提高学生的审美能力和审美标准;通过相交线,使学生进一步体会几何图形的简单美、对称美.

二、学法引导

1.教师教法:教具直观演示法启发引导、尝试研讨.

2.学生学法:动手动脑、积极参与、认真研讨、学会概括.

三、重点、难点及解决办法

(一)重点

(二)难点

在较复杂的图形中准确辨认对顶角和邻补角.

(三)疑点

对顶角、邻补角的图形识别.

(四)解决办法

强调图形的基本特征,指导学生逐步学会分解复杂图形、找出基本图形的方法.

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、三角尺、自制复合胶片、木条制成的相交直线的模型.

六、师生互动活动设计

1.通过实例创设情境,引导学生进入课题.

2.通过演示实验和学生讨论、总结对顶角、邻补角两个概念.

3.通过学生研讨、练习巩固完成性质的讲解.

4.通过学生总结完成课堂小结.

5.通过随堂练习,检测学生学习情况.

七、教学步骤

(一)明确目标

能在图形中正确辨认对顶角和邻补角,理解其概念,掌握其性质,并运用其进行推理计算.

(二)整体感知

通过对较复杂图形的认识和学习,逐步加深几何知识,培养学生逻辑思维能力和逻辑推理、表达能力.

(三)教学过程

创设情境,引入课题

投影打出本章的章前图(投影片1),然后引导学生观察,并回答问题.

学生活动:口答哪些道路是交错的,哪些道路是平行的.

教师导入  :图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.它们就是我们本章要研究的课题:

【板书】第二章  相交线、平行线

【教法说明】以立交桥为实例引出本章内容,目的是①通过实例,让学生了解相交线、平行线是我们日常生活中经常见到的;②通过画面,培养学生的空间想像能力;③通过画面,启发学生广泛地联想,让学生知道,相交线、平行线的概念是从实物中抽象出来的;④通过学生熟悉的事物,激发学生的学习兴趣.

学生活动:请学生举出现实空间里相交线、平行线的一些实例.

教师导入  :相交线、平行线在日常生活中经常见到,有着广泛应用,所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,从而引入本节课题.

篇12:数学教案-相交线、对顶角

探究新知,讲授新课

教师演示:取两根木条a、b,用钉子将它们钉在一起,并且能随意张开.固定水条a,绕钉子转动b,可以看到,b的位置变化了,a、b所成的角a也随着变化.这说明两条直线相交的不同位置情况,与它们的交角大小有关.可以用它们所成的角来说明相对位置的各种情况.所以研究两条直线相交问题首先来研究两条直线相交得到的有公共顶点的四个角.这四个角都有一个公共顶点,其中有些有公共边,有些没有公共边,故我们把这些角分成两类:对顶角和邻补角.

【教法说明】演示相交线的模型,目的是使学生领会研究相交线为什么要研究它们相交所成的角.

1.对顶角和邻补角的.概念

学生活动:观察右图,同桌讨论if与Z3有什么特点,然后,举手回答,教师统一学生观点并板书.

【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.

学生活动:让学生找一找右图中还有没有对顶角,如果有,是哪两个角?

学生口答:∠2和∠4再也是对顶角.

紧扣对顶角定义强调以下两点:

(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.

(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.

反馈练习:投影显示(投影片2)

下列各图中,∠l和∠2是对顶角吗?为什么?(射线OA是活动的)

【教法说明】本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象,最后一个图形为下面讲部补角做铺垫。

学生活动:观察图2-l,∠1和∠2与对顶角相比,有什么相同点和不同点,从而得出邻补角的定义.

【板书】∠l和∠2也是直线AB、CD相交得到的,它们不仅有一个公共顶点O,还有一条公共边OA,像这样的两个角叫做邻补角.

学生活动:让学生找一找图2-1中还有没有其他邻补角,如果有,是哪些角.

学生口答:∠1和∠4,∠2和∠3,∠3和∠4都是邻补角.

【教法说明】把邻补角的概念与对顶角概念对比着讲解,便于掌握概念之间的联系与  区别,加深对概念的理解.

提出问题:如右图,∠1和∠2还是邻补角吗?为什么?

师:邻补角也可以看成是一条直线与端点在这条直线上的一条射线组成的两个角,由此可知,邻补角是有特殊位置关系的两个互补的角.右图这样的邻补角在图形中也是常见的.在这种情况下,只存在一对邻补角,而不存在对顶角,与两条直线相交所得的角不同.

教师演示:图中射线OC固定在一个位置不动,把∠1和∠2拉开,并且保持角的大小不变,如右图(投影片3).

提出问题:∠l和∠2的和是多少度?∠l和∠2还是邻补角吗?为什么?

学生活动:观察图形的变换,回答教师提出的问题,同桌可相互讨论.

【教法说明】此问题意在区别互为补角和互为邻补角的概念,演示活动投影片,有助于学生抓住概念的本质,比教师单纯地强调效果更好.

2.对顶角的性质

提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?

学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.

【教法说明】学生说出对顶角∠l=∠3后,启发学生再说出∠2=∠4,然后得出对顶角相等的性质.在学生理解推理思路的基础上,板书为几何符号推理的格式.对顶角的性质不难得出,放手让学生展开讨论,充分发挥学生的主动性,在活跃课堂气氛的同时,培养学生的创造思维能力

【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),

∴∠l=∠3(同角的补角相等).

注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.

或写成:∵∠1= 180°-∠2,∠3=180°-∠2(邻补角定义),

∴∠1=∠3(等量代换).

【教法说明】推得“对顶角相等”这个结论的过程,是课本中初次出现的一步推理,使学生了解推理可以写成“∵……∴……”的形式,并且每一步都要有根据,也就是括号里填的理由.这种推理的格式以后还要逐步渗透和训练,现在不要求自己会写推理过程,只要求学生能看明白就可以了,为以后证明打好基础。

尝试反馈,巩固练习

投影显示(投影片4)

【教法说明】本级统习是巩固对顶角和邻补角概念的,同时培养学生的识图能力.第1题是课本第59页练习第2题的变式,第2题是课本第59页练习第3题和“想一想”的综合.解决这类题目的关键是要善于从复杂图形中分离出基本图形.对顶角、邻补角的基本图形是两条直线相交,则三条直线相交的图形应分解为三个两条直线交于一点的图形.如:

为此,对顶角有 2×3=6个,邻补角的对数为 4×3=12个.第3、4题是有关的概念的综合训练,其中第4题意在区别互为补角和互为邻补角的概念.

投影显示(投影片5)

【教法说明】第1题是直接利用对顶角相等的性质得出,第2、3题是结合图形利用对顶角相等的性质,第4题是课本59负练习第4题,是两条直线相交的一种特殊情况,为下节课讲两直线互相垂直埋下伏笔.

变式训练,培养能力

投影显示(投影片6)

学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

解:∠3=∠1=40°(对顶角相等).

∠2=180°-40°=140°(邻补角定义).

∠4=∠2=140°(对顶角相等).

【教法说明】例题一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象更深刻.

学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.

变式1:把∠l=40°变为∠2-∠1=40°

变式 2:把∠1=40°变为∠2是∠l的3倍

变式3:把∠1=40°变为∠1 :∠2=2:9

变式4:把∠1=40°变为∠1=平角

【教法说明】学生自编开放性的题目,一是活跃课堂气氛;二是培养学生的开放思维能力和逆向思维能力.变式1、2、3均可建立方程或方程组求解,几何中计算角度和线段长度等问题常借助代数方程来解决.

(四)总结、扩展

角的名称

特征

性质

相同点

不同点

对顶角

①两条直线相交面成的角

②有一个公共顶点

③没有公共边

对顶角相等

都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。

对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个有的对顶角有一个,而一个角的邻补角有两个。

邻补角

①两条直线相交面成的角

②有一个公共顶点

③有一条公共边

邻补角互补

学生活动:表格中的结论均由学生自己口答填出.

【教法说明】课堂小结以提问形式,由学生自己讨论,系统归纳总结,以便培养学生的概括表达能力.

八、布置作业

(一)必做题

课本第69页习题 2.1A组第2题.

(二)思考题

课本第70页习题2.1A组第4题

【教法说明】作业 紧紧围绕着对顶角、邻补角的概念及对顶角性质.思考题是对顶角性质的一个应用实例,结合图形可以看出,活动指针的读数,就是两直线相交成一个角的度数,培养学生应用数学的意识.

(三)作业 答案

2.解:(1)∠AOD的对顶角是∠BOC,∠EOC的对顶角是∠DOF.

(2)∠AOC的邻补角是∠AOD和∠BOC,∠EOB的邻补角是∠AOE和∠BOF.

(3)∠BOD=∠AOC=50°(对顶角相等),∠BOC=180°-50=130°(邻补角定义).

4.应用对顶角相等的性质测量角.

九、板书设计

篇13: 《相交线与平行线》教后反思

《相交线与平行线》教后反思

这一段时间复习了《相交线与平行线》,发现学生存在以下问题:

1.对于“三线八角”中,有不少同学一直认为,只要是同位角和内错角,就应该相等,只要是同旁内角就是互补的,把前提条件两直线平行这个条件就给忘记了。这个知识点要再给学生讲清楚,不能让学生有误解的。

2.在平行线的性质和判定的应用中,学生不太明白是哪两条直线应该平行,或者说由哪两条直线应该得到哪些角平行,不少学生搞不太清楚。比如在平行四边形ABCD中,连接AC,不少学生搞不明白,假如是AB∥CD,应该得到∠DCA=∠CAB还是得到∠DAC=∠ACB,所以在学生练习时要结合图形,让学生明白在平行的三条线中,到底是哪两条直线被哪一条直线所截,应该得到哪些角相等,要让学生完全弄明白,教学反思《相交线与平行线》复习教学反思》。

3.在平移中,学生对于画平移的图形掌握的不是太好,要么是画图时不体现画图痕迹,要么是不会画,完全凭自己的感觉在画图,说明学生对于平移的规律和特征没有掌握,要以后练习中要加强这方面的训练。

4.对于有关平行的计算和证明,做的也不是太好,有的同学根本不会做,也有一部分学生会做,但是不会写解题过程,没有严格的逻辑推理。

综上所述,在以后的复习中要注意,加强基础知识点的`掌握,对于一些概念和定理,要让学生准确无误的掌握,不能让学生因为基础知识掌握的不好,出现这样那样的问题。对学生的解题过程要加强训练和指导,让学生尽快的掌握几何的书写过种和推理过程。

篇14:七年级数学平行线相交线知识点

七年级数学平行线相交线知识点

1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

3.对顶角和邻补角的关系

4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。

7.垂线性质

(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。

(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

8.同位角、内错角、同旁内角:

同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。

10.平行线:在同一平面内,不相交的两条直线叫做平行线。

11.命题:判断一件事情的语句叫命题。

12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

13.假命题:条件和结果相矛盾的命题是假命题。

14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

16.定理与性质

对顶角的性质:对顶角相等。

17.垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

19.平行线的性质:

性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

20.平行线的判定:

判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

初中数学直线的性质

(1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

(4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。

学好初中数学的必备技能

数学运算

初中生学习数学要培养自己的运算能力,因为这是学习初中数学的基础,而且初中是培养数学运算能力的最佳时期。比如有理数运算、因式分解等等。初中数学一定要打好基础,这样会影响将来的数学学习。

数学的思维

想要学好初中数学,一定要培养数学的思维能力。对于一道练习题,不仅仅是只有一个解题方法。它有对立性在解决问题的时候,一定要相互转换和补充。平时多做练习题可以提高学生的思维能和数学能力。

篇15:相交线与平行线知识点总结

相交线与平行线知识点总结

一、目标与要求

1.理解对顶角和邻补角的概念,能在图形中辨认;

2.掌握对顶角相等的性质和它的推证过程;

3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。

二、重点

在较复杂的图形中准确辨认对顶角和邻补角;

两条直线互相垂直的概念、性质和画法;

同位角、内错角、同旁内角的概念与识别。

三、难点

在较复杂的图形中准确辨认对顶角和邻补角;

对点到直线的距离的概念的理解;

对平行线本质属性的理解,用几何语言描述图形的性质;

能区分平行线的性质和判定,平行线的性质与判定的混合应用。

四、知识框架

五、知识点、概念总结

1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

3.对顶角和邻补角的关系

4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。

7.垂线性质

(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。

(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

8.同位角、内错角、同旁内角:

同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。

10.平行线:在同一平面内,不相交的两条直线叫做平行线。

11.命题:判断一件事情的语句叫命题。

12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

13.假命题:条件和结果相矛盾的命题是假命题。

14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

16.定理与性质

对顶角的性质:对顶角相等。

17.垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

19.平行线的性质:

性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

20.平行线的判定:

判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

21.命题的扩展

三种命题

(1)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。

(2)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。

(3)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。

四种命题的相互关系

(1)四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。

(2)四种命题的真假关系:

两个命题互为逆否命题,它们有相同的真假性。两个命题为互逆命题或互否命题,它们的真假性没有关系

命题之间的关系

(1)能够判断真假的陈述句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题。

(2)“若p,则q”形式的命题中p叫做命题的条件,q叫做命题的结论。

(3)命题的分类:

A:原命题:一个命题的本身称之为原命题,如:若x>1,则f(x)=(x-1)2单调递增。

B:逆命题:将原命题的条件和结论颠倒的新命题,如:若f(x)=(x-1)2单调递增,则x>1.

C:否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序,

如:若x小于1,则f(x)=(x-1)2不单调递增。

D:逆否命题:将原命题的条件和结论颠倒,然后再将条件和结论全否定的新命题,

如:若f(x)=(x-1)2不单调递增,则x小于1.

(4)命题的否定

命题的否定是只将命题的结论否定的新命题,这与否命题不同。

(5)4种命题及命题的否定的真假性关系

原命题和逆否命题等价,否命题和逆命题等价,命题的否定与原命题的真假性相反。

充分条件与必要条件

(1)“若p,则q”为真命题,叫做由p推出q,记作p=>q,并且说p是q的充分条件,q是p的必要条件。

(2)“若p,则q”为假命题,叫做由p推不出q,记作p≠>q,并且说p不是q的充分条件(或p是q的非充分条件),q不是p的必要条件(或q是p的非必要条件)。

充要条件

如果既有p=>q,又有q=>p,就记作p<=>q,并且说p是q的充分必要条件(或q是p的充分必要条件),简称充要条件。

篇16:相交线

相交线 - 初中数学第一册教案

相交线〈垂线〉

学习目标:

知识目标

了解两条直线互相垂直的概念;

2.知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。

能力目标

培养提高学生观察、理解能力,几何语言能力、画图能力,抽象思维能力。运用知识解决实际问题能力。

德育目标

培养学生辩证唯物主义思想及不断发现,探索新知识的精神。

情感目标

通过创设情境,利用变式训练,多种教学手段来激发学生学习兴趣,给学生创造成功的机会,使他们爱学、会学、学会,营造学生可持续发展的机会。

重点:两直线互相垂直的有关性质 难点:过直线上(外)一点作已知直线的垂线

教具:多媒体、投影仪、自制的可旋转的两根木条等

[学习目标是从基础知识教学、基本技能训练、数学能力培养和德育目标四个方面,依据《数学课程标准》关于“垂线”的具体教学要求和各种教学原则,以及本节的教材内容与学生的实际确定的。]

互究策略:(教学流程)

一、背景1.[生活背景]旗杆与旗台边缘线的垂直关系;红十字会标志;

2.[知识背景]两条直线相交,产生两对对顶角,且对顶角相等。

二、师生互究1.创设问题情境

师:这是两幅草坪的图案。在绿色的草坪上,画着两条交叉的道路。你觉得甲图、乙图那幅更漂亮、更匀称。这是什么原因?[教师用多媒体或投影仪展示]

[学生众说纷纭,教师应给予充分的肯定]

师:图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广。请你再举一些类似的例子。生:……

师:让我们共同探索图甲这种特殊情况?。

[借助于教具,模型,实物,图形及幻灯等教学手段,使学生先得到直观的感性认识,培养学生从感性到理性的认识方式]

2.回顾再现:对顶角相等

两条直线相交只有一个交点。如图(1),直线AB和CD相交,交点为点O,有四个小于平角的角,且∠AOC=∠BOD,∠AOD=∠BOC

1.  提高:教师演示自制教具,要求学生观察当一根木条绕着另一根木条旋转是的变化情况,并用数学语言进行描述。

[教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。]

师:两直线相交,有两组分别相等的角,当一个角等于90°时,其它三个角有什么变化?可能产生四个相等的角吗?如图(2)[同时演示教具] 将直线CD绕着点O旋转,当∠BOD=90°时,∠AOC、∠AOD、∠BOC是多少度?生:……师:你们的依据是什么?

生: ……(用度量的方法;利用对顶角相等;互补的概念……学生回答过程中,只要有道理就应予以鼓励)[这里希望在感性认识的基础上进行抽象概念的教学,培养学生的抽象思维能力。]

2.  提升:[教师引导学生归纳]两条直线互相垂直:两条直线相交所构成的四个角中有一个角是直角时,称这两条直线互相垂直。

师:。┤缤(2),直线AB和CD相交,交点为O,∠BOC=90°,记为AB⊥CD,垂足为点O。“AB⊥CD”读作“AB垂直于CD”或“CD垂直于AB”。

)两条直线AB⊥CD, 垂足为点O,则∠AOC=∠AOD=∠BOC=∠BOD=90°

[实现数学的三大语言:文字语言,符号语言,几何语言之间的切换,并板书以突出其重要性]

5.再探究:师:请同学们举一些日常生活中互相垂直的直线的例子;生:……

[希望实现将数学知识在实际生活中的运用,并为后继数学知识增加感性认知]

师:请同学们用三角尺或量角器:

。┚过直线AB外一点P,画直线与已知直线AB垂直,且讨论这样的垂线有几条?

)设这一点在直线AB上,重作上述过程。

[学生分组或独立探索,教师巡视指导]

[教师引导学生归纳结论]:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

[通过学生动手操作画图,教师在巡视中及时指出、纠正学生发生的错误,训练学生以严谨的科学态度研究问题、解决问题。]

师:请同学们互相门交流且简单描述一下,上述结论用三角尺的作法过程和“有且只有”的含义

[学生讨论交流,教师巡视] 师:[引导归纳]

a)、靠已知直线――找待过定点――画已知直线的垂线(一靠、二过、三垂直)。

b)、有一条并且只有一条没有第二条。

师:如图(5)请同学们相互比试,谁能更快地过直线CD上一点P作直线AB的垂线。并在小组间进行交流。

[探究性活动是《数学课程标准》的一个重要举措,并为培养学生的创新意识提供了一些机会。“做一做”进行小组交流,一方面是为了加强对学生动手操作能力的培养,同时也培养了学生的合作意识和竞争意识,使学生更深入理解垂直、垂线的概念。]

6.学生探索:[学生分小组测量,讨论,归纳]如图(6)所示,点A与直线DC上各点的距离长短一样吗?谁最短?它具备什么条件?[抽小组代表发言]

7.教师:[总结归纳]只有线段AB最短,且当AB与DC垂直时,才最短。

[教师引导学生得出线段AB特征:A为直线外一点,B为过A向直线DC所引的垂线的垂足,]

提高为:线段AB的长度就是点A到直线DC的距离。

思考:点A到直线DC的距离与点A到点C的距离有什么区别?

点A到直线DC的距离:线段AB的长度,A为直线外一点,B为过A向直线DC所引的垂线的垂足;点A到点C的距离:两点之间线段的长度。

[从生活实际,从学生感兴趣,熟悉的问题引导学生发现垂线的第二个性质,提高学生学数学的兴趣,并适当体现学数学――用数学――发现数学的思想。]

三、较量1.P170  1 、 2 、 3 2.应用:[使学生在相互竞争中,实践应用本节课的知识,分享获取成功的喜悦,并促进学生积极向上的心理品质]

⑴、某村庄在如图(7)所示的小河边,为解决村庄供水问题,需把河中的水引到村庄A处,在河岸CD的什么地方开沟,才能使沟最短?画出图来,并说明道理。

⑵、教材P170 做一做⑶、体育课上怎样测量跳远成绩。

[学以致用,学生做个小小设计师,兴趣盎然,把这节课引入高潮。]

四、分享:

a)         两条直线互相垂直的概念;

b)        如何过已知直线上或已知直线外的一点作唯一的垂线。

五、探索:① P174   1  、 2

③ 学校的位置如图(8)所示,请设计出学校到两条公路的最短距离的方案,并在图上标出来,并说明理由。

相交线〈垂线〉

学习目标:

知识目标

了解两条直线互相垂直的.概念;

2.知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。

能力目标

培养提高学生观察、理解能力,几何语言能力、画图能力,抽象思维能力。运用知识解决实际问题能力。

德育目标

培养学生辩证唯物主义思想及不断发现,探索新知识的精神。

情感目标

通过创设情境,利用变式训练,多种教学手段来激发学生学习兴趣,给学生创造成功的机会,使他们爱学、会学、学会,营造学生可持续发展的机会。

重点:两直线互相垂直的有关性质 难点:过直线上(外)一点作已知直线的垂线

教具:多媒体、投影仪、自制的可旋转的两根木条等

[学习目标是从基础知识教学、基本技能训练、数学能力培养和德育目标四个方面,依据《数学课程标准》关于“垂线”的具体教学要求和各种教学原则,以及本节的教材内容与学生的实际确定的。]

互究策略:(教学流程)

一、背景1.[生活背景]旗杆与旗台边缘线的垂直关系;红十字会标志;

2.[知识背景]两条直线相交,产生两对对顶角,且对顶角相等。

二、师生互究1.创设问题情境

师:这是两幅草坪的图案。在绿色的草坪上,画着两条交叉的道路。你觉得甲图、乙图那幅更漂亮、更匀称。这是什么原因?[教师用多媒体或投影仪展示]

[学生众说纷纭,教师应给予充分的肯定]

师:图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广。请你再举一些类似的例子。生:……

师:让我们共同探索图甲这种特殊情况?。

[借助于教具,模型,实物,图形及幻灯等教学手段,使学生先得到直观的感性认识,培养学生从感性到理性的认识方式]

2.回顾再现:对顶角相等

两条直线相交只有一个交点。如图(1),直线AB和CD相交,交点为点O,有四个小于平角的角,且∠AOC=∠BOD,∠AOD=∠BOC

1.  提高:教师演示自制教具,要求学生观察当一根木条绕着另一根木条旋转是的变化情况,并用数学语言进行描述。

[教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。]

师:两直线相交,有两组分别相等的角,当一个角等于90°时,其它三个角有什么变化?可能产生四个相等的角吗?如图(2)[同时演示教具] 将直线CD绕着点O旋转,当∠BOD=90°时,∠AOC、∠AOD、∠BOC是多少度?生:……师:你们的依据是什么?

生: ……(用度量的方法;利用对顶角相等;互补的概念……学生回答过程中,只要有道理就应予以鼓励)[这里希望在感性认识的基础上进行抽象概念的教学,培养学生的抽象思维能力。]

2.  提升:[教师引导学生归纳]两条直线互相垂直:两条直线相交所构成的四个角中有一个角是直角时,称这两条直线互相垂直。

师:。┤缤(2),直线AB和CD相交,交点为O,∠BOC=90°,记为AB⊥CD,垂足为点O。“AB⊥CD”读作“AB

篇17:数学七年级下册相交线平行线知识点

数学七年级下册相交线平行线知识点

1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

3、两条直线被第三条直线所截:

同位角F(在两条直线的同一旁,第三条直线的同一侧)

内错角Z(在两条直线内部,位于第三条直线两侧)

同旁内角U(在两条直线内部,位于第三条直线同侧)

4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

5、垂直三要素:垂直关系,垂直记号,垂足

6、垂直公理:过一点有且只有一条直线与已知直线垂直。

7、垂线段最短。

8、点到直线的距离:直线外一点到这条直线的垂线段的长度。

9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c

10、平行线的判定:

①同位角相等,两直线平行。②内错角相等,两直线平行。 ③同旁内角互补,两直线平行。

11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

12、平行线的性质:

①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

13、平面上不相重合的两条直线之间的位置关系为_______或________

14、平移:①平移前后的两个图形形状大小不变,位置改变。②对应点的线段平行且相等。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

15、命题:判断一件事情的语句叫命题。

命题分为题设和结论两部分;题设是如果后面的,结论是那么后面的。

命题分为真命题和假命题两种;定理是经过推理证实的真命题。

用尺规作线段和角

1.关于尺规作图:尺规作图是指只用圆规和没有刻度的直尺来作图。

2.关于尺规的功能

直尺的功能是:在两点间连接一条线段;将线段向两方向延长。

圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。

初中数学学习方法分享

理解数学学习概念

很多初中生对于数学的学习有所误解,他们认为数学只需要会运算就可以了,对于一些概念什么的不需要特别记忆。但是这些都是错误的偏见,概念是学好初中数学的基石,这里的概念当然还包括定理和一些数学性质。

那么当初中生在背诵和理解概念的时候不单单是要记住,还要明白为什么。如果初中生仅仅注重概念从而忽略了对于概念本身的理解,这样是学不好数学的。对于初中数学的每一个定义我们都明白其实是怎么来的,又要会如何运用。

多做练习题

我们不得不承认,想要学好初中数学是离不开练习题的。很多同学不愿意做练习题,这样是没有办法学好数学的。因为虽然我们记住了定理和公式,但是最后的目的能够把它应用到数学题上面。为什么有的同学做了很多的练习题但是数学成绩依然上不去呢?

数学函数的概念知识点

1.常量与变量:在某一变化过程中,可以取不同数值的量叫做变量;在某一变化过程中保持数值不变的量叫做常量.

2.函数:在某一变化过程中的两个变量x和y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值和它对应,那么y就叫做x的函数,其中x做自变量,y是因变量.

(1)自变量取值范围的确定

①整式函数自变量的取值范围是全体实数.

②分式函数自变量的取值范围是使分母不为0的实数.

③二次根式函数自变量的取值范嗣是使被开方数是非负数的实数,若涉及实际问题的函数,除满足上述要求外还要使实际问题有意义.

篇18:数学第五章相交线与平行线试题

数学第五章相交线与平行线试题

一、填空题

1.如图,直线AB、CD相交于点O,若∠1=28°,则∠2=_______.

2.已知直线,,,则度.

3.如图,已知AB∥CD,EF分别交AB、CD于点E、F,∠1=60°,则∠2=______度.

4.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P=_____.

5.设、b、c为平面上三条不同直线,

(1)若,则a与c的位置关系是_________;

(2)若,则a与c的位置关系是_________;

(3)若,,则a与c的位置关系是________.

6.如图,填空:

⑴∵(已知)

∴_____________( )

⑵∵(已知)

∴_____________( )

⑶∵(已知)

∴______________( )

二、解答题

7.如图,与是邻补角,OD、OE分别是与的平分线,试判断OD与OE的位置关系,并说明理由.

8.如图,已知直线AB与CD交于点O,OE⊥AB,垂足为O,若∠DOE=3∠COE,求∠BOC的度数.

9.如图,直线,求证:.

10.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.

解:∠B+∠E=∠BCE

过点C作CF∥AB,

则____

又∵AB∥DE,AB∥CF,

∴____________()

∴∠E=∠____( )

∴∠B+∠E=∠1+∠2

即∠B+∠E=∠BCE.

11.如第10题图,当∠B、∠E、∠BCE有什么关系时,有AB∥DE.

12如图,AB∥DE,那么∠B、∠BCD、∠D有什么关系?

13、如图9,直线a∥b,∠1=28°,∠2=50°,则∠3=____。∠3+∠4+∠5=___。

14、若两条平行线被第三条直线所截得的八个角中,有一个角的度数已知,则( )

A 只能求出其余3个角的度数 B 只能求出其余5个角的度数

C 只能求出其余6个角的度数 D 只能求出其余7个角的度数

15、如图,已知AB∥CD,EG平分∠FEB,若∠EFG=40°,则∠EGF=( )

A 60° B 70° C 80° D 90°

16、设A、B、C是直线a上的三点,P为直线a外一点,若PA=2,PB=3,PC=5,则点P到直线a的`距离( )

A 等于2 B 小于2 C 不小于2 D 不大于2。

17、两条直线被第三条直线所截,则( )

A同位角的邻补角相等 B内错角的对顶角相等

C同位角一定不相等 D两对同旁内角的和一定等于一个周角

18、如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有( )

A 1个 B 2个 C 3个 D 4个(提示:三角形内角和为180°)

19、如图,已知∠AGD=∠ACB,∠1=∠2。求证:CD∥EF。(填空并在后面的括号中填理由)

证明:∵∠AGD=∠ACB ( )

∴DG∥____ ()

∴∠3=____ ()

∵∠1=∠2 ( )

∴∠3=____ (等量代换)

∴___∥___()

20、如图,已知∠1=∠C,∠2=∠3。BE是否平分∠ABC?为什么?

21、如图,∠A=60°,DF⊥AB于F,DG∥AC交AB于G,DE∥AB交AC于E。求∠GDF的度数。

解:∵DF⊥AB ( )

∴∠DFA=90° ()

∵DE∥AB ()

∴∠1=___=__ ()

∠EDF=180°-∠DFA

=180°-90°=90° ()

∵DG∥AC ( )

∴∠2=____=____ ()

∴∠GDF=

22、阅读:如图①,CE∥AB,∴∠1=∠A,∠2=∠B。∴∠ACD=∠1+∠2=∠A+∠B。这是一个有用的事实,请用这个事实在图②的四边形ABCD内引一条和边平行的直线,求出∠A+∠B+∠C+∠D的度数。

23、如图,已知四边形ABCD中,AD∥BC,AB∥DC,试说明∠A=∠C,∠B=∠D。

24、如图,已知∠A=∠1,∠C=∠D。试说明FD∥BC。

25、如图,直线a∥b,A、B为直线b上两点,C、D为直线a上两点。

(1)请写出图中面积相等的三角形;

(2)若A、B、C为三个定点,点D在a上移动,那么无论D点移动到何处,总有_____与△ABC的面积相等。理由是______________________。

26、如图,已知AD⊥BC于D,EF⊥BC于F,∠E=∠1,AD平分∠BAC吗?若平分,请写出推理过程;若不平分,试说明理由。

篇19:相交线与平行线说课课件

一、背景分析:

1、学习内容分析

平行与相交是在学生初步认识了角以及直线、射线、线段的基础上进行教学的。平面内两条直线的平行与相交(垂直)的位置关系是以后进一步认识平行四边形、梯形等平面图形的基础,对于理解掌握初中几何知识也起着非常重要的作用。

2、学生情况分析

学生已经掌握了与本节课有密切关系的“角”、“直线、射线、线段”的知识。大部分学生敢于大胆猜想,能较好地进行小组合作与交流。

学习本节内容学生可能存在的困难:①对于一些几何术语可能理解不透,如:“同一平面内”等。②进行分类时忽略了直线可以延长导致分类标准不统一。

二、教学方式与教学手段说明:

本课主要采用观察比较、交流讨论和自主探索的学习策略。通过多媒体动态演示、帮助学生理解知识难点。

三、技术准备:

多媒体课件,相交线、平行线及垂线图片。

【教学目标】

1.认识平行线和垂线,初步理解平行与垂直是同一平面内两条直线特殊的两种位置关系,会初步辨析垂线和平行线。

2.经历把生活问题抽象为数学问题的过程,通过观察、分类、比较、举例等丰富多彩的探索活动,培养学生的观察能力、空间想象能力。

3.使学生感受到数学与生活的联系,激发学生学习数学的兴趣,引导学生具有主动思考、探究的学习意识。

【教学重点】

正确理解“相交”、“互相平行”、“互相垂直”,认识“平行线”和“垂线”。

【教学难点】

正确理解“同一平面内”两条直线之间的位置关系,建立垂线、平行线的空间概念。

教学过程

教学阶段教师活动学生活动设置意图技术应用
一、情景导入、引入新课1. 师:在我们的生活中有许多常见的物体,你能从中找出两条直线吗?(出示图片)

2. 师:同学们真是善于观察,发现了这么多组直线,今天这节课我们就来一起研究两条直线的位置关系。

观察图片,寻找图片中的直线。使学生经历把生活问题抽象为数学问题的过程,感受到数学与生活的联系,培养学生的观察能力。利用白板的拖拽功能,从图片中抽象出直线。

二、分类归纳、认识平行和相交

1. 自主探究、分类归纳

师:这些都是我们刚才找出的几组直线,认真观察这几组直线,你能给它们分分类,并说说你的理由吗?(出示从图片中找出的12组直线。)

教巡视。

指名上前进行分类。

组织交流。

你为什么这样分?你有不同意见吗?

分类小结。

学生自主分类探究。

学生上前利用白板拖拽功能对12组直线进行分类。

学生积极思考,发表不同观点。

使学生进行自主合作交流,通过观察、分类、比较等丰富多彩的`探索活动,培养学生的观察能力、归类能力。

引导学生关注到直线可以向两端无限延长的特点,对自己的分类进行修改完善。

利用白板的拖拽功能进行分类。

利用多媒体课件,帮助学生理解两条直线向两端无限延长后可以相交的情况。

2. 认识相交

师:这样的可以交叉的两条直线,我们给它取一个名字?

像这样当两条直线可以交叉在一起时,我们给它取个名字叫“相交”,两条直线的交叉点叫“交点”。(出示图片)(板书:相交、交点。)

观察两条相交的直线的特点,积极思考。引导学生观察体会两条相交的直线的特点,认识相交。

3. 认识平行

◆ 解“不相交的两条直线。”

那这几组的两条直线会相

交吗?(课件演示:两条直线分别向两端无限延长,永远不会相交。)

不相交的两条直线我们给它取个名字?

我们把像这样的不相交的两条直线叫做平行线,也可以说这两条直线互相平行(出示图片)(板书:互相平行)

观察体会平行线的特点,积极思考。引导学生认识互相平行,体会平行线的特点。利用多媒体课件,帮助学生理解平行线中的两条直线分别向两端无限延长,永远不会相交。
4. 认识垂直

◆这组相交的直线中,哪组最特殊?为什么?

第三组最特殊,因为第三组有直角。(利用量角器进行验证。)

课件演示:

也就是说两条直线相交时可以像这样形成两个锐角和两个钝角,也可以像这样形成四个直角。

师:当两条直线相交成直角时,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。(出示图片)(板书:互相垂直、垂足。)

垂直和相交的关系

师:那垂直和相交有什么关系?(垂直是相交的一种特殊情况。)

认真观察,积极思考,发现第三组直线的特殊。

认真观察并思考,进一步认识互相垂直,并体会互相垂直是相交的一种特殊情况。

引导学生通过观察,初步了解垂直的特点。

利用多媒体课件,进一步引导学生认识垂直,并体会互相垂直是两条直线相交的一种特殊情况。

利用白板的量角器工具,验证第三组直线是否相交成直角。

利用多媒体课件,使学生观察两条直线相交的动态过程,对垂直形成更深刻的认识。

5. 理解“在同一平面内”。

◆ :刚才我们认识了两条直线可以相交或互相平行,其中互相垂直是相交的一种特殊情况,那还有其他情况吗?

这里有一个牙膏盒,你能判断一下牙膏盒上这两条直线的位置关系吗?

看来我们的结论还不够严谨,那么我们应该加一个怎样的条件?

我们今天研究的是在同一个平面内的直线。(板书:在同一平面内。)

这就是我们今天学习的平行与相交。(板书课题。)

思考两条直线都有哪些位置关系。

思考牙膏盒上这两条直线的位置关系。

对刚刚学过的两条直线的位置关系进行复习,并为下面的环节做好铺垫。

激发认识冲突,引起学生思考。

6. 质疑:你还有哪些疑问吗?

三、复习巩固1. 说一说下面每组图形是相交、互相平行还是互相垂直?

(图略)

2. 下面每个图形中哪些线段是互相平行的?哪些线段是互相垂直的?(图略)

3. 回答以下问题:(图略)

(1)互相平行的有: ;

(2)互相垂直的有: ;

(3)相交但不垂直的有: ;

认真思考,积极发言。对本节课所学知识进行练习巩固。

四、课堂小结这节课你有哪些收获?认真思考,积极发言。引导学生对本节课的收获进行梳理总结。

篇20:《平行线与相交线》导学案课件

●课时安排

7课时

第一课时

●课题

§2.1余角与补角

●教学目标

(一)教学知识点

1.余角、补角及对顶角的定义.

2.余角、补角及对顶角的性质.

(二)能力训练要求

1.经历观察、操作、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力.

2.在具体情境中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等,并能解决一些实际问题.

(三)情感与价值观要求

通过在具体情境下的讨论,让学生理解基础知识的同时,提高他们理论联系实际的观念.

●教学重点

1.互为余角、互为补角的定义及其性质.

2.对顶角的定义及性质.

●教学难点

互为余角、互为补角、对顶角的定义的理解.

●教学方法

讲练结合法

教师在充分发挥学生的主观能动性的同时,来与学生进行交流、讨论,使之能运用本节内容解决一些实际问题.

●教学过程

Ⅰ.创设现实情景,引入新课

[师]在上册第四章“平面图形及其位置关系”中,我们学习了“平行”与“垂直”,大家想一想:什么是平行线?

[生]在同一平面内,不相交的两条直线叫做平行线.

[师]很好,在日常生活中,我们随处可见道路、房屋、山川、桥梁……等这些大自然的杰作和人类的创造物.这其中蕴涵着大量的平行线和相交线.

下面大家来看几幅图片:(出示投影片:P49的桥的图片,宫殿、建筑物、门等的图片)

你能从这些图案中找出平行线和相交线吗?

(同学们踊跃发言,都能准确地找出其中的平行线和相交线)

[师]同学们找得都对,说明大家掌握了所学内容.从今天开始,我们将深入学习这方面的内容:第二章平行线与相交线.

在这一章里,我们将发现平行线和相交线的一些特征,并探索两条直线平行的条件,我们还将利用圆规和没有刻度的直尺,尝试着作一些美丽的图案.

相信大家,一定会学得很好.

图2-1

Ⅱ.讲授新课

[师]我们知道,光的反射是一种常见的物理现象,通过如图的实验装置我们可以验

证光的反谢定律:

活动内容:参照教材p59光的反射实验提出下列问题:

(1) 模拟试验:通过模拟光的反射的试验,为学生提供生动有趣的问题情景,将其抽象为几何图形,为下面的探索做好准备。

(2)利用抽象出的几何图形分三个层次提出问题,进行探究。

i说出图中各角与∠3的关系。将学生的回答分类总结,从而得到余角、补角的定义。

ii图中还有哪些角互补?哪些角互余?在巩固刚刚得到的概念的同时,为下一个问题作好铺垫。

iii图中都有哪些角相等?由此你能够得到什么样的结论?在学生充分探究、交流后,得到余角、补角的性质。

由此,我们得到了一个新的概念:互为余角.即:如果两个角的和是直角,那么称这两个角互为余角(complementary angle),也就是说其中一个角是另一个角的余角.

只要有∠BDC+∠1=90°,就可知道∠1与∠BDC互为余角,反过来知道∠1与∠BDC是互为余角,就一定知道∠1与∠BDC的和为直角.

再之:∠1与∠BDC是互为余角就是说:∠1是∠BDC的余角,∠BDC也是∠1的余角.

大家看老师手里拿两个三角板(一边演示,一边叙述):这一个三角板的60°的角与另一个三角板的30°的角加起来正好是90°,那么我们说这两个角是互为余角.

同学们应注意:(强调)

(1)互为余角是对两个角而言的.

(2)互为余角仅仅表明了两个角的数量关系,而没有限制角的位置关系.

[生]老师,我们知道了:两个角的和是直角,则这两个角是互为余角.刚才我们还讨论了:∠1+∠ADF=180°,∠EDB+∠1=180°.

那么这样的两个角又叫什么呢?

[师]这位同学问得好,这就是我们要学习的另一个概念:互为补角.即:如果两个角的和是平角,那么称这两个角互为补角(supplementary angle).

互为补角的概念的理解与互为余角的理解基本一样.哪些同学能尝试的说一下呢?

[生甲]只要满足∠1+∠ADF=180°,就可知道∠1与∠ADF是互为补角.反之知道∠1与∠ADF是互为补角,就一定可知道∠1与∠ADF的和是平角.

[生乙]∠1与∠ADF是互为补角,就是说:∠1是∠ADF的补角,∠ADF也是∠1的补角.

[生丙]互为补角也是对两个角而言的.与角的大小有关,而与位置无关.

[生丁]∠EDB与∠1也是互为补角.

[师]同学们回答得真棒.互为余角、互为补角都是针对两个角而言的,仅仅表示了两个角之间的数量关系,并没有限制角的位置关系.

好,下面大家来想一想.(出示投影片§2.1 A)

在下图中,CD与EF垂直,∠1=∠2.

(1)哪些角互为余角?哪些角互为补角?

(2)∠ADC与∠BDC有什么关系?为什么?

(3)∠ADF与∠BDE有什么关系?为什么?

图2-2

(同学们分组讨论,得结论)

[生甲]在图中:∠1与∠ADC、∠2与∠ADC、∠BDC与∠1、∠BDC与∠2都是互为余角.

∠1与∠ADF、∠EDB与∠1、∠ADF与∠2、∠EDB与∠2都是互为补角.

[生乙]∠ADC与∠BDC相等,因为:

∠ADC+∠1=90°,∠BDC+∠1=90°

所以:∠ADC=90°-∠1=∠BDC.

[生丙]∠ADC与∠BDC相等的理由还可以这样说:因为∠ADC+∠1=90°,∠BDC+∠2=90°,所以∠ADC=90°-∠1,∠BDC=90°-∠2,又因为∠1=∠2,所以∠ADC=∠BDC.

[生丁]老师,是不是这样:∠ADC是∠1的余角,∠BDC也是∠1的余角,所以∠ADC与∠BDC就相等.因此可以说:同一个角的余角相等.∠ADC是∠1的余角,∠BDC是∠2的余角,而∠1与∠2相等.所以∠ADC与∠BDC相等.因此可以说:相等的角的余角相等.

[师]丁同学总结得很好.大家的意见怎么样?

[生齐声]丁同学总结得对.

[师]很好,这就得出互为余角的性质:

同角或等角的余角相等.

接下来看第三个问题:

(同学们踊跃发言,得出结论)

[生]∠ADF与∠BDE相等.因为∠1+∠ADF=180°,∠1+∠BDE=180°,所以,∠ADF=180°-∠1=∠BDE.还可以这样说:

因为∠1+∠ADF=180°,∠2+∠BDE=180°,所以∠ADF=180°-∠1,∠BDE=180°-∠2,又因为∠1=∠2,所以∠ADF=∠EDB.

因此得出结论:

同角或等角的补角相等.

[师]同学们表现得很好,通过讨论,得出互为余角、互为补角的性质:

同角或等角的余角相等.

同角或等角的补角相等.

接下来,我们议一议.

(可用电脑演示,也可用实物剪刀实际操作,然后提问.)(出示投影片§2.1 B)

(1)用剪刀剪东西时,哪对角同时变大或变小?

(2)如果将剪刀的图形简单表示为下图,请问:∠1与∠2的位置有什么关系?它们的大小有什么关系?为什么?

图2-3

[生甲](1)用剪刀剪东西时,相对的角同时变大或变小.

[生乙]图中的∠1与∠2有公共的顶点O,且角的两边互为反向延长线.

∠1与∠2相等,因为∠1是∠BOC的.补角,∠2也是∠BOC的补角.由同角的补角相等,可得∠1与∠2相等.

[师]很好,像这样,直线AB与直线CD相交于点O,∠1与∠2有公共顶点,它们的两边互为反向延长线,这样的两个角叫对顶角.

如图中的∠AOD与∠BOC也是对顶角.

由对顶角的概念可知,对顶角的本质特征是:两个角有公共顶点,两个角的两边互为反向延长线.

所以要在图形中准确地找出对顶角,需两看:

(1)看是不是两条直线相交所得的角;

(2)看是不是有公共顶点而没有公共边(或不相邻)的两个角.

另外,从对顶角的定义还可知:对顶角总是成对出现的,它们是互为对顶角;一个角的对顶角只有一个.

接下来大家想一想:对顶角有什么性质?

[生齐声]对顶角相等.

[师]好,“对顶角相等”是对顶角的重要性质.

下面大家来议一议(出示投影片§2.1 C)

如图(P52的上图)所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量角是多少度吗?你的根据是什么?

[生甲]根据对顶角相等,可以得出所量角的度数是40°.

[生乙]我利用补角可得出所量角的度数是180°-140°=40°.

[师]同学们能利用学过的有关事实解决实际问题,这很好.

下面我们来做一练习,以巩固所学内容.

Ⅲ.课堂练习

1.下图中有对顶角吗?若有,请指出,若没有,请说明理由.

图2-4

答案:图(1)、(2)、(3)中没有对顶角,因为这三个图形中的∠1、∠2不是两条直线相交所形成的.图(4)中有对顶角,分别是∠1与∠3;∠2与∠4.

2.判断对错

(1)顶点相对的角是对顶角.( )

(2)有公共顶点,并且相等的角是对顶角.( )

(3)两条直线相交,有公共顶点的角是对顶角.( )

(4)两条直线相交,有公共顶点,没有公共边的两个角是对顶角.( )

答案:××× √

(举反例说明)

Ⅳ.课时小结

这节课我们学习了三个定义、三个性质,现在来总结一下:

定义:

互为余角:如果两个角的和是直角,则这两个角互为余角.

互为补角:如果两个角的和是平角,则这两个角互为补角.

对顶角:像这样直线AB与直线CD相交于O,∠1与∠2有公共顶点,它们的两边互为反向延长线,这样的两个角叫做对顶角.

注意:

(1)互为余角、互为补角只与角的度数有关,与角的位置无关.

(2)对顶角的判断条件:

性质:

同角或等角的余角相等,同角或等角的补角相等.

对顶角相等.

Ⅴ.课后作业

(一)课本P52习题2.11、2、3

(二)1.预习内容:P53~54

2.预习提纲

(1)直线平行的条件是什么?

(2)同位角的概念.

(3)会用三角尺过已知直线外一点画这条直线的平行线.

●板书设计

§2.1台球桌面上的角

一、台球桌面上红球滑过的痕迹

图2-5

∠1+∠ADC=90°

∠1+∠BDC=90°

∠1+∠ADF=180°

∠1+∠BDE=180°

二、互为余角、互为补角的定义

三、互为补角、互为余角的性质

同角或等角的余角相等.

同角或等角的补角相等.

四、对顶角的定义

五、对顶角的性质:

对顶角相等.

六、练习

七、小结

八、作业1.习题2.1数学理解1,2

习题2.1问题解决1,2

【数学教案-相交线、平行线】相关文章:

1.《平行线与相交线》说课稿

2.数学课《相交线与平行线》的教学反思

3.相交线作文

4.相交线、对顶角 教案

5.数学教案-平行线的判定

6.七年级数学下学期《相交线》教学反思

7.人教版相交线教学设计教材分析

8.数学教案-平行线分线段成比例定理

9.平行线说课稿

10.相识相知相交作文

下载word文档
《数学教案-相交线、平行线.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部