欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>考研考研线性代数知识点归类

考研考研线性代数知识点归类

2025-01-16 08:26:11 收藏本文 下载本文

“szford”通过精心收集,向本站投稿了5篇考研考研线性代数知识点归类,以下是小编帮大家整理后的考研考研线性代数知识点归类,仅供参考,欢迎大家阅读。

考研考研线性代数知识点归类

篇1:考研考研线性代数知识点归类

2020考研考研线性代数知识点归类

01特点与难点

1、特点

前面是基础,后面是应用。

这句话有三层意思

⑴、前面的内容学好,后面内容才看得懂。

⑵、前面内容不会单独考,70%会结合后面内容考查,所以题目综合性强。

⑶、前面内容需要记忆,类似于泰勒公式,类似于求导公式,但是不同于泰勒公式的是,可以通过理解记忆。

2、难点

⑴、没有一本好的辅导书。

①刚刚说过,前面的内容可以通过理解记忆,但是辅导书不讲深层原因,而是直接罗列出来。

比如:行列式性质

②大部分考研难度的题目都具有一定综合性,编者不好编辑例题。

比如:行列式内容中,抽象行列式涉及矩阵内容(此时矩阵还没有学习)

矩阵内容中秩的相关概念需要用向量和方程组的知识理解(此时向量还没有学习)

⑵、网课老师深浅把握不好

张宇:线性代数讲得深!他可以把深层次原因讲出来,但是作为新手,你会质疑老师的能力!

李永乐:讲的细致,风格恰好与张宇相反。

杨超:同李永乐

⑶、某些概念理解有困难

这部分原因是两部分造成的:

①没有理解前面某些概念。

②由于题目综合性强,练的题目少。

把这三个难点联系在一起,你们有没有发现?

线性代数复习进入了一个死循环

前期复习没有涉及后面的知识点→做题少、不能够通过做题加深概念→后面知识点理解困难→做题少、不能够通过做题加深概念。

所以,堂主下面写的内容对你们有三个帮助

帮助1:知道哪些习题是综合性题目,哪些知识点是为后面做铺垫。

帮助2:让你们对线性代数有一个系统的了解。

帮助3:帮助你们梳理知识点,避免盲目的学习!

02各章知识点总结

【行列式】

1、行列式本质——就是一个数

2、行列式概念、逆序数

考研:小题,无法联系其他知识点,当场解决。

3、二阶、三阶行列式具体性计算

考研:不会单独出题,常常结合伴随矩阵、可逆矩阵考察。

4、余子式和代数余子式

考研:代数余子式的正负是一个易错点,了解代数余子式才能学习行列式展开定理。

5、行列式展开定理

考研:核心知识点,必考!

行列式的计算只掌握3和5,7属于处理方法(题型)。

6、行列式性质

考研:核心知识点,必考!小题为主。

7、行列式计算的几个题型

①、划三角(正三角、倒三角)

②、各项均加到第一列(行)

③、逐项相加

④、分块矩阵

⑤、找公因

这样做的目的,在行/列消出一个0,方便运用行列式展开定理。

考研:经常运用在找特征值中。

⑥数学归纳法

⑦范德蒙行列式

⑧代数余子式求和

⑨构造新的代数余子式

考研:这9个小知识点,除⑤外,只涉及第一章的考点。

如果出大题,最多是一道大题的第一问!绝不可能单独命题!

8、抽象型行列式(矩阵行列式)

①转置

②K倍

③可逆

③伴随

④题型 丨A+B丨;丨A+B-1丨;丨A-1+B丨型

(这部分内容放在第二章,但属于第一章的内容)

考研:出小题概率非常大,抽象性行列式与行列式性质结合考察

【矩阵】

1、矩阵性质

考研:与伴随矩阵、可逆矩阵、初等矩阵结合考察。

2、数字型n阶矩阵运算

①方法一:秩是1

②方法二:含对角线上下三角为0的矩阵

③方法三:利用二项式定理,拆写成E+B型

④方法四:利用分块矩阵

⑤方法五:P-1AP=B;P-1APP-1AP=B2

方法五涉及相似对角化知识。

方法三涉及高中知识。

考研:常见在大题出现,是大题的第一问!看到数字型n阶矩阵运算,一定出自这5个方法。

(如果本题不会做,你的问题出在只掌握这五种方法的某几种,所以你是失败在归纳总结上了)

3、伴随矩阵

考研:伴随矩阵常与其他知识考察,与行列式、转置、K倍、可逆、伴随的伴随结合考察。

4、二阶矩阵的伴随矩阵

法则:主对角线互换、副对角线填负号。

考研:如果让求某个二阶矩阵的可逆矩阵,难点转化成如何计算它的伴随矩阵。

5、可逆矩阵两种求法

考研:可逆矩阵可与行列式、转置、K倍、伴随矩阵、可逆的可逆结合考察。

6、分块矩阵

考研:以小题出现

7、初等矩阵

考研:小题出现

8、正交矩阵、对称矩阵、反对称矩阵

考研:第二章先知道张什么模样,这部分内容在二次型、相似对角化考察。

9、秩(十个公式)

考研:我把秩比作答题的第二种方法,在解决向量、方程组等相关知识点,可以用传统方法(解题速度慢),也可用秩,解题速度是传统方法的5倍!但是难懂。

这部分内容建议听:李永乐+杨超+汤家凤的所有网课内容!强化记忆!是线性代数的难点!!!

(但不是重要考点)

【向量】

1、几组定义(向量内积、向量的长度、单位化、正交)

考研:考单位化,但是如果想理解线性代数本质,向量内积、向量的长度要懂。

2、线性相关、无关的三大判别方法

⑴、利用行列式

⑵、向量个数>维度,必相关

⑶、利用秩

考研:小题出现,很少结合其他章节知识点。

3、线性相关无关证明题三种思路

⑴、利用定义法

⑵、用秩

⑶、反证法

考研:大题考点,这部分内容可以与线性方程组结合,也可以与特征值特征向量结合,也可以与秩结合。至于如何结合,怎么结合,请自己归纳总结。

4、线性表出四大判别方法

⑴、利用行列式

⑵、利用秩

⑶、利用定义

⑷、利用方程组

考研:可小题、可大题,但是通是大题的某一问。

5、克拉默法则

考研:服务线性表出。

6、线性表出计算题三大思路

⑴、利用克拉默法则

⑵、构建方程组,抓0思想

⑶、与向量组结合考等价。

考研:大题考点!涉及部分方程组知识和初等行变换知识。

这部分内容涉及重要的数学思想:分类讨论!!!(大题爱考)

7、线性表出证明题四个理论

考研:大题小题都有,但是近几年小题居多。

8、极大线性无关组

考研:核心考点内容和2、3知识点一样,换汤不换药

9、等价向量组

考研:小题居多,很少与其它章节知识点结合。

【线性方程组】

1、基础解系

(不懂就背下来,我当时考研到10月份才茅塞顿开。)

2、齐次线性方程组与非齐次线性方程组

⑴、常规求解

⑵、解含参数的方程组

(这部分内容最难在于化简,矩阵基础要牢固!!)

⑶、利用解的三个性质

⑷、通过矩阵运算,构造方程组再求解

考研:大题核心考点,历年考题向量和方程组会出其中一道,而方程组的出题概率高于向量!原因如下

①、解题方法多。

②、能与矩阵相关知识联系结合。

3、公共解、同解两种题型

考研:重要考点题!

【特征值与特征向量】

1、特征值相关概念与计算

考研:必考题,这里面难点不在于特征值相关知识,而在于求解行列式相关知识。

2、特殊特征值

⑴、上三角矩阵、下三角矩阵。

⑵、秩为1的矩阵

⑶、某个矩阵拆分后,利用⑴和⑵结合。

3、相似矩阵概念及性质

考研:不会单独出,但一定会结合其他题目

4、相似矩阵两种考题

如果P-1AP=B

⑴若Aλ=λa →B(P-1a)=λ(P-1a)

⑵若Ba=λa →A(Pa)= λ(Pa)

考研:这部分内容是内容5的基础,但是如果单独出考题,不太可能。

5、对角矩阵的相似问题

核心内容:“搭桥”桥是Λ。

考研:核心重点考点!

本内容需要分类讨论、需要基础解系相关知识、又可以联系特征值、特征向量,性质方面也可全面考察。

6、反对称矩阵

考研:小题

7、实对称矩阵以及正交矩阵

考研:也是重要考点,大部分知识和前面一样,唯一不同之处在于多一个史密斯正交化。

【二次型】

1、二次型相关概念

内容和微分方程有异曲同工之妙,记忆的内容比较多,但比较简单。

考研:出小题,比如填写一个负惯性指数。

2、矩阵的等价、相似、合同

考研:出小题,一定不可能出大题的。

3、化二次型为标准型、正定问题

考研:核心重点考点,内容本身没什么难度,只是把前面所有的知识综合起来。

这里不用细说,如果前面的相关内容复习的非常好,这部分内容学习起来会轻松很多。

03总结

1、线性代数一个月之内完成!堂主预计是20天左右

2、如何归纳总结,堂主已经把“坑”挖好了,填坑的工作交给你们了。

对这种类型的题关注到何种程度,也已告知。

3、线性代数最难的不是特征值、二次型,而是向量和线性方程组。

4、现在看不懂没关系,建议你们打印下来这篇文章,在复习中体会,以及各位可以把我的“坑”再次细分。

5、线性代数一轮结束,可以抽2天听张宇基础班内容,讲的是线性代数的本质内容。

经验告诉你们,张宇线性代数基础班比强化班还要抽象。

对于有基础的你们,属于锦上添花。

考研心比天高,调剂命比纸薄

►选择很重要

对于学校的选择,一定要慎重(血的教训),可以晚点选择学校,差不多暑假或暑假前把学校选好,但是一定要查清楚目标院校的基本信息,包括:

1、该校历年录取人数

如果本科为双非学校,特别要弄清目标院校历年录取人数中统招生的名额!!!我选第一志愿今年统招生好像只要五六个。

2、该校历年考试书目

查清楚目标院校历年初试书目,比较稳定的应该不会有变动,因为有的学校会在十月份左右换书。或者就选择大部分学校初试都会考的书,这样即使你的目标院校临时换书或者加书了,你也可以换学校。

比如我本科是思想政治教育专业,所以很多学校的初试书多为马原、毛中特、思修、近代史之类的书。我第一志愿学校初试考的是马克思主义发展史和思想政治教育原理与方法,幸亏没换书

3、该校历年录取分数线

千万不要只盯着上一年的分数,比如看见上一年350多也进去了就觉得很好考,这完全是错误的,要看看历年的分数,多比较比较,从自身实际出发,不要盲目选择。

4、该校历年英语分数线

一定要关注目标院校历年英语分数线,根据自己的英语水平去选择合适的学校,以防最后英语卡线的现象出现。当然,也不排除英语水平在考研期间突飞猛进的情况,这个因人而异吧。

►在最后关头要坚持

我在这上面吃了大亏。我其实不是太赞成把占线拉的特别长,后期容易“没油”。考研分三个时期:新鲜期――充满干劲,缓冲期――继续坚持,冲刺期――重中之重。我认为冲刺期最重要,前期都是为了这个做准备,这个时期极易产生自我怀疑等负面情绪,要调整好状态,坚持住。

我在后期特别不想学习,然后复习不到位,没看到的刚好出题了,所以要想不输就不能存在侥幸心理,觉得这个题应该不会出就不看了。

►合理规划时间,劳逸结合

学习要有方法,特别羡慕宿舍一妹子,背书不出声,属于理解记忆那种类型,我背书必须得读出声,要不然记不住,而且效率还不高。计划表是一定要做的,详细一点更好。可以以周为单位,一周结束后看一下自己完成的情况,会有满满的成就感。最好把奖惩政策也制定一下,适时地奖励自己一下,学习会更有干劲。

►对各科目的时间分配要合理

虽然都说前期侧重英语,专业课可以往后拖,但是真心建议不要把专业课拖的太晚了,因为专业课是一个把书读薄又读厚的过程,确定好学校后可以在学习英语的空闲适当地看看专业课的书。政治可以不用开始这么早,但是可以下载几个新闻软件或者关注人民日报等,有意识地多关注新闻。

►手机

如果自制力不强,出门学习可以不带手机,或者怕有人联系就换个老年机。

►不要轻言放弃

初试专业课题型今年突然大变,一下子就懵了,耽误了一段时间,导致一门专业课分数极低,上午一考完就感觉砸了,但是下午还是去考试了,要不真的是调剂都没办法了真的是什么时候都不要轻言放弃。

篇2:考研数学 线性代数知识点

考研数学 线性代数必备知识点

研究生备考的硝烟还未散尽时,另一场战役已经打响。在考研数学的三门课里,线性代数这门课的特点又是什么呢?线性代数这门课对考生的抽象能力的要求特别的高,大纲要求主要考查的有抽象行列式的计算,抽象矩阵求逆,抽象矩阵求秩,抽象行列式求特征值与特征向量,这四种抽象题型是考研线性代数每年常出题型,占有很大比重,要求同学们有较高的综合能力。

线性代数的前后知识的连续性强完全是由它自身的知识体系和逻辑推理方式来决定的,很多同学也都说线性代数的公式概念结论特别的多,前后联系特别的紧密,在做一个题时,如果有一个公式或者结论不知道,后面的过程就无法做下去,其实这也符合考研大纲的要求的考生运用所学的知识分析问题和解决问题的能力。如果和高等数学做个比较,我们把高等数学看作是一个连续性的推理过程,线性代数就是一个跳跃性的推理过程,在做题时表现的会很明显。同学们在做高等数学的题时,从第一步到第二步到第三步在数学式子上一个一个等下去很清晰,但是同学们在做线性代数的题目时从第一步到第二步到第三步经常在数学式子上看不出来,比如行列式的计算,从第几行(或列)加到哪行(列)很多时候很难一下子看出来。针对上述特点,给出线性代数的各章节重要知识点具体复习建议,希望同学们的复习能够有的放矢。

一、行列式与矩阵

行列式、矩阵是线性代数中的基础章节,从命题人的角度来看,可以像润滑油一般结合其它章节出题,因此必须熟练掌握。

行列式的核心内容是求行列式――具体行列式的计算和抽象行列式的计算。其中具体行列式的计算又有低阶和高阶两种类型,主要方法是应用行列式的性质及按行(列)展开定理化为上下三角行列式求解;而对于抽象行列式而言,考点不在如何求行列式,而在于结合后面章节内容的相对综合的题。

矩阵部分出题很灵活,频繁出现的知识点包括矩阵各种运算律、矩阵的基本性质、矩阵可逆的判定及求逆、矩阵的秩、初等矩阵等。

二、向量与线性方程组

向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的`内容则相对独立,可以看作是对核心内容的扩展。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

这部分的重要考点一是线性方程组所具有的两种形式――矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。

(1)齐次线性方程组与向量线性相关、无关的联系

齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立――印证了向量部分的一条性质“零向量可由任何向量线性表示”。

齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系――齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。

(2)齐次线性方程组的解与秩和极大无关组的联系

同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”。经过 “秩→线性相关、无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。

(3)非齐次线性方程组与线性表出的联系

非齐次线性方程组是否有解对应于向量是否可由列向量

三、特征值与特征向量

相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容――既有行列式、矩阵又有线性方程组和线性相关性,“牵一发而动全身”。

本章知识要点如下:

1. 特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。

2. 相似矩阵及其性质,需要区分矩阵的相似、等价与合同:

3. 矩阵可相似对角化的条件,包括两个充要条件和两个充分条件。充要条件一是n阶矩阵有n个线性无关的特征值;二是任意r重特征根对应有r个线性无关的特征向量。

4. 实对称矩阵及其相似对角化,n阶实对称矩阵必可正交相似于以其特征值为对角元素的对角阵。

四、二次型

这部分所讲的内容从根本上讲是特征值和特征向量的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵,必存在正交矩阵,使其可以相似对角化”,其过程就是上一章实对称矩阵相似对角化的应用。

本章核心要点如下:

1. 用正交变换化二次型为标准型。

2. 正定二次型的判断与证明。

篇3:考研数学线性代数难点知识点分析

考研数学线性代数难点知识点分析

在考研数学中,线性代数部分所占分值为22%,虽然所占比例不及高数分值高,但同样重要。线性代数部分内容相对容易,考试的时候出题的套路比较固定。但线代的考题对考生对基本概念的理解要求很高,很多考生往往是读完了题却不知道题目的实际含义是什么。这就要求同学们在复习时多注意一下基本概念。

依据2013考研数学新大纲以及历年真题来看,线性代数的重难点如下:

一、行列式

行列式的性质、行列式按行(列)展开定理是重点,但不是难点。在行列式的计算题目中,尤其是抽象行列式的计算,常用到矩阵的相关知识,应提高对知识的综合运用能力。

二、矩阵

逆矩阵、矩阵的初等变换、矩阵的秩是重点。逆矩阵的.计算,以及矩阵是否可逆的判定属于常考内容。矩阵的初等变换常以选择题形式出现。

三、向量

向量组的线性相关与线性无关是一个重点,要求掌握向量组线性相关、线性无关的性质及判别法,常以选择题、解答题形式出现。正交矩阵也可以作为一个重点掌握。考查最多的是施密特正交化法。

四、线性方程组

方程组解的讨论、待定参数的解的讨论问题是重点考查内容。掌握用初等行变换求解线性方程组的方法。

五、矩阵的特征值和特征向量

矩阵的特征值、特征向量的计算以及矩阵的对角化是重点。对于抽象矩阵,要会用定义求解;对于具体矩阵,一般通过特征方程 求特征值,再利用 求特征向量。相似对角化要掌握对角化的条件,注意一般矩阵与实对称矩阵在对角化方面的联系与区别。

六、二次型

这部分需要掌握两点:一是用正交变换和配方法化二次型为标准形,重点是正交变换法。需要注意的是对于有多重特征值时,解方程组所得的对应的特征向量可能不一定正交,这时要正交规范化。二是二次型的正定性,掌握判定正定性的方法。

篇4:考研数学线性代数重要知识点分布

考研数学线性代数重要知识点分布

线性代数的概念很多,重要的有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。跨考李老师为大家分析考研数学线性代数重要知识点。

一、课程特点

特点一:知识点比较细碎。

如矩阵部分涉及到了各种类型的性质和关系,记忆量大而且容易混淆的地方较多。

特点二:知识点间的联系性很强。

这种联系不仅仅是指在后面几章中用到前两章行列式和矩阵的相关知识,更重要的是在于不同章节中各种性质、定理、判定法则之间有着相互推导和前后印证的关系。

复习线代时,要做到“融会贯通”。

“融会”--设法找到不同知识点之间的内在相通之处;

“贯通”--掌握前后知识点之间的顺承关系。

二、行列式与矩阵

第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算又有低阶和高阶两种类型;主要方法是应用行列式的性质及按行列展开定理化为上下三角行列式求解。对于抽象行列式的`求值,考点不在求行列式,而在于相关性质,矩阵部分出题很灵活,频繁出现的知识点包括矩阵运算的运算规律、运算性质、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。

三、向量与线性方程组

向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节;后两章特征值、特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。解线性方程组可以看作是出发点和目标。线性方程组(一般式)

还具有两种形式:(1)矩阵形式,(2)向量形式。

1.齐次线性方程组与线性相关、无关的联系

齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立;印证了向量部分的一条性质“零向量可由任何向量线性表示”。

齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性此方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系:齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关无关的概念就是为了更好地讨论线性方程组问题而提出的。

2.齐次线性方程组的解与秩和极大无关组的联系

同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”。经过“秩→线性相关无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。

3.非齐次线性方程组与线性表示的联系

非齐次线性方程组是否有解对应于向量是否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。

四、特征值与特征向量

相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容--既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。本章知识要点如下:

1.特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。

2.相似矩阵及其性质,需要区分矩阵的相似、等价与合同:

3.矩阵可相似对角化的条件,包括两个充要条件和两个充分条件。充要条件1是n阶矩阵有n个线性无关的特征值;充要条件2是任意r重特征根对应有r个线性无关的特征向量。

4.实对称矩阵及其相似对角化,n阶实对称矩阵必可正交相似于对角阵。

五、二次型

本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵存在正交矩阵使得可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

篇5:考研数学大纲线性代数重要知识点总结

2014年考研数学大纲线性代数重要知识点总结

2014年考研数学大纲与2013年相比,没有任何变化。近5年的数学大纲保持稳定,相对应的真题的题型与难度也是比较稳定的。因此对于线性代数这门考试科目,建议广大学子抓住重点难点,把基础知识“点”串联成“面”,再配以典型题目构架成完善的知识“体”,这样才能做到在考研这一战场上于线代阵中将分数收入囊中而丝毫不费吹灰之力!

下面某教育机构陈老师结合最新的2014考研数学大纲,针对线性代数的重要知识点给大家做一下总结:

一、行列式与矩阵

行列式、矩阵是线性代数中的基础章节,从命题人的角度来看,可以像润滑油一般结合其它章节出题,因此必须熟练掌握。

行列式的核心内容是求行列式――具体行列式的计算和抽象行列式的计算。其中具体行列式的计算又有低阶和高阶两种类型,主要方法是应用行列式的性质及按行(列)展开定理化为上下三角行列式求解;而对于抽象行列式而言,考点不在如何求行列式,而在于结合后面章节内容的比较综合的题。

矩阵部分出题很灵活,频繁出现的知识点包括矩阵各种运算律、矩阵相关的重要公式、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。

二、向量与线性方程组

向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

这部分的重要考点一是线性方程组所具有的两种形式――矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。

(1)齐次线性方程组与向量线性相关、无关的联系

齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立――印证了向量部分的一条性质“零向量可由任何向量线性表示”。

齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系――齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。

(2)齐次线性方程组的解与秩和极大无关组的联系

同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的`。秩的定义是“极大线性无关组中的向量个数”。经过 “秩→线性相关、无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。

(3)非齐次线性方程组与线性表示的联系

非齐次线性方程组是否有解对应于向量是否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。

三、特征值与特征向量

相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容――既有行列式、矩阵又有线性方程组和线性相关性,“牵一发而动全身”。

本章知识要点如下:

1. 特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。

2. 相似矩阵及其性质,需要区分矩阵的相似、等价与合同:

3. 矩阵可相似对角化的条件,包括两个充要条件和两个充分条件。充要条件一是n阶矩阵有n个线性无关的特征值;二是任意r重特征根对应有r个线性无关的特征向量。

4. 实对称矩阵及其相似对角化,n阶实对称矩阵必可正交相似于以其特征值为对角元素的对角阵。

四、二次型

这部分所讲的内容从根本上讲是特征值和特征向量的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵,必存在正交矩阵 使其可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

本章知识要点如下:

1. 二次型及其矩阵表示。

2. 用正交变换化二次型为标准型。

3. 正负定二次型的判断与证明。

【考研考研线性代数知识点归类】相关文章:

1.考研数学 线性代数知识点

2.考研数学线性代数重要知识点分布

3.考研数学:线性代数方程组需掌握的知识点

4.考研数学 线性代数五大考点解析

5.考研数学:线性代数八种思维定势

6.考研数学 线性代数主要考点与要求

7.考研数学冲刺攻略之线性代数:融汇贯通

8.如何有效复习考研数学之线性代数

9.考研中国近代史纲要知识点

10.考研政治知识点总结 历史唯物主义

下载word文档
《考研考研线性代数知识点归类.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部