欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教学总结>线性代数教学总结

线性代数教学总结

2022-11-12 08:25:08 收藏本文 下载本文

“无赖”通过精心收集,向本站投稿了12篇线性代数教学总结,这次小编给大家整理后的线性代数教学总结,供大家阅读参考。

线性代数教学总结

篇1:线性代数考点总结

1、行列式的重点是计算,利用性质熟练准确的计算出行列式的值。

2、矩阵中除可逆阵、伴随阵、分块阵、初等阵等重要概念外,主要也是运算,其运算分两个层次:

(1)矩阵的符号运算。

(2)具体矩阵的数值运算。

3、关于向量,证明(或判别)向量组的线性相关(无关),线性表出等问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。

4、向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。

5、于特征值、特征向量,要求基本上有三点:

(1)要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程OλE-AO=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用。

(2)有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵,反过来,可由A的特征值,特征向量来确不定期A的参数或确定A,如果A是实对称阵,利用不同特征值对应的.特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A.

(3)相似对角化以后的应用,在线性代数中至少可用来计算行列式及An.

6、将二次型表示成矩阵形式,用矩阵的方法研究二次型的问题主要有两个:

(1)化二次型为标准形,这主要是正交变换法(这和实对称阵正交相似对角阵是一个问题的两种提法),在没有其他要求的情况下,用配方法得到标准形可能更方便些。

(2)二次型的正定性问题,对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象的由给定矩阵的正定性,证明相关矩阵的正定性时,可利用标准形,规范形,特征值等到证明,这时应熟悉二次型正定有关的充分条件和必要条件。

篇2:线性代数知识点总结

线性代数知识点总结

第一章行列式

知识点1:行列式、逆序数

知识点2:余子式、代数余子式

知识点3:行列式的性质

知识点4:行列式按一行(列)展开公式

知识点5:计算行列式的方法

知识点6:克拉默法则

第二章矩阵

知识点7:矩阵的概念、线性运算及运算律

知识点8:矩阵的乘法运算及运算律

知识点9:计算方阵的幂

知识点10:转置矩阵及运算律

知识点11:伴随矩阵及其性质

知识点12:逆矩阵及运算律

知识点13:矩阵可逆的判断

知识点14:方阵的行列式运算及特殊类型的矩阵的运算

知识点15:矩阵方程的求解

知识点16:初等变换的概念及其应用

知识点17:初等方阵的概念

知识点18:初等变换与初等方阵的关系

知识点19:等价矩阵的概念与判断

知识点20:矩阵的子式与最高阶非零子式

知识点21:矩阵的秩的概念与判断

知识点22:矩阵的秩的性质与定理

知识点23:分块矩阵的概念与运算、特殊分块阵的运算

知识点24:矩阵分块在解题中的技巧举例

第三章向量

知识点25:向量的'概念及运算

知识点26:向量的线性组合与线性表示

知识点27:向量组之间的线性表示及等价

知识点28:向量组线性相关与线性无关的概念

知识点29:线性表示与线性相关性的关系

知识点30:线性相关性的判别法

知识点31:向量组的最大线性无关组和向量组的秩的概念

知识点32:矩阵的秩与向量组的秩的关系

知识点33:求向量组的最大无关组

知识点34:有关向量组的定理的综合运用

知识点35:内积的概念及性质

知识点36:正交向量组、正交阵及其性质

知识点37:向量组的正交规范化、施密特正交化方法

知识点38:向量空间(数一)

知识点39:基变换与过渡矩阵(数一)

知识点40:基变换下的坐标变换(数一)

第四章 线性方程组

知识点41:齐次线性方程组解的性质与结构

知识点42:非齐次方程组解的性质及结构

知识点43:非齐次线性线性方程组解的各种情形

知识点44:用初等行变换求解线性方程组

知识点45:线性方程组的公共解、同解

知识点46:方程组、矩阵方程与矩阵的乘法运算的关系

知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例

第五章矩阵的特征值与特征向量

知识点48:特征值与特征向量的概念与性质

知识点49:特征值和特征向量的求解

知识点50:相似矩阵的概念及性质

知识点51:矩阵的相似对角化

知识点52:实对称矩阵的相似对角化.

知识点53:利用相似对角化求矩阵和矩阵的幂

第六章二次型

知识点54:二次型及其矩阵表示

知识点55:矩阵的合同

知识点56 : 矩阵的等价、相似与合同的关系

知识点57:二次型的标准形

知识点58:用正交变换化二次型为标准形

知识点59:用配方法化二次型为标准形

知识点60:正定二次型的概念及判断

篇3:线性代数知识点总结

线性代数知识点总结

线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,太奇考研专家们提醒广大的的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对考研的同学们学习有帮助。

行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《20xx年全国硕士研究生入学统一考试数学120种常考题型精解》。

矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。

向量组的线性相关性是线性代数的重点,也是考研的重点。考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。

往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。

特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。

由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础.重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法.重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。

一、行列式与矩阵

行列式、矩阵是线性代数中的基础章节,从命题人的角度来看,可以像润滑油一般结合其它章节出题,因此必须熟练掌握。

行列式的核心内容是求行列式——具体行列式的计算和抽象行列式的计算。其中具体行列式的计算又有低阶和高阶两种类型,主要方法是应用行列式的性质及按行(列)展开定理化为上下三角行列式求解;而对于抽象行列式而言,考点不在如何求行列式,而在于结合后面章节内容的相对综合的题。

矩阵部分出题很灵活,频繁出现的知识点包括矩阵各种运算律、矩阵的基本性质、矩阵可逆的判定及求逆、矩阵的秩、初等矩阵等。

二、向量与线性方程组

向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

这部分的重要考点一是线性方程组所具有的两种形式——矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。

(1)齐次线性方程组与向量线性相关、无关的联系

齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立——印证了向量部分的一条性质“零向量可由任何向量线性表示”。

齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系——齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。

(2)齐次线性方程组的解与秩和极大无关组的联系

同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”。经过 “秩→线性相关、无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。

(3)非齐次线性方程组与线性表出的联系

非齐次线性方程组是否有解对应于向量是否可由列向量

三、特征值与特征向量

相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关性,“牵一发而动全身”。

本章知识要点如下:

1. 特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。

2. 相似矩阵及其性质,需要区分矩阵的相似、等价与合同:

3. 矩阵可相似对角化的条件,包括两个充要条件和两个充分条件。充要条件一是n阶矩阵有n个线性无关的特征值;二是任意r重特征根对应有r个线性无关的特征向量。

4. 实对称矩阵及其相似对角化,n阶实对称矩阵必可正交相似于以其特征值为对角元素的对角阵。

四、二次型

这部分所讲的内容从根本上讲是特征值和特征向量的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵,必存在正交矩阵,使其可以相似对角化”,其过程就是上一章实对称矩阵相似对角化的应用。

本章核心要点如下:

1. 用正交变换化二次型为标准型。

2. 正定二次型的判断与证明。

篇4:线性代数的教学反思

线性代数的教学反思

【摘要】由于线性代数中的基本概念和性质较多且较抽象、知识连贯性较强,致使大多学生感到学习较困难,学习兴趣下降。为了摆脱枯燥乏味的学习,提高学生的学习积极性,本文给出了在实际教学中的五个注重。

【关键词】建构 趣味性 概念图

【Abstract】Due to the basic concepts and properties in linear algebra are more abstract, and the knowledge consistency is very strong, resulting in the majority of students feel it difficult to learn and lose interest in learning. In order to get rid of the tedious learning, enhance the enthusiasm of students, this paper gives five focus on practical teaching.

【Key Words】linear algebra; teaching

引言

线性代数课程是全国高等院校开设的一门重要的基础课程,它不仅是学生学习后续课程的基础而且在生活中具有较强的实用性。但是由于我校学生数学基础较差、数学思维能力较弱,因此大多学生普遍反映线性代数课程枯燥无趣、计算繁琐,毫无实际意义。要想改变现状,提高学生的兴趣,学好线性代数这门课程,笔者通过教学实践和反思,认为在线性代数的教学中应注意以下五点。

1.注重在原有知识上建构新知识

要让学生明确,他们所要学习的知识内容是和他们自身息息相关的。最基本的方法就是让学生意识到将要学习的知识内容与他们过去的经验或已经掌握的知识相关,充分利用他们已有的概念、知识来解释建构新概念、新知识。这样引入新知识不显突兀,而且便于学生接受。例如:行列式定义的引入。

在中学,同学们已经学习而且牢牢掌握了如何解线性方程组,因此可从一般的二元、三元线性方程组的求解出发,引入二阶、三阶行列式的定义,即由已知探索未知。

通过对一般的二元、三元线性方程组的求解,引入二阶、三阶行列式的定义式,后继学习中引导学生观察二阶、三阶行列式计算式中的项数、每一项元素的特点及符合特征,进而让学生自己尝试定义n阶行列式。得出n阶行列式的定义后,让学生思考:在什幺条件下可以利用n阶行列式表示n元线性方程组的解等问题。诸如此类问题的提出可以激发学生的求知欲、探索欲望,提高其学习线性代数的兴趣。

2.注重教学过程的趣味性[2]

俗话说,兴趣是最好的的老师,人们常常关注那些引起他们情绪反应或自己感兴趣的事物,而对那些缺乏兴趣的事物不愿多关注,因此,富有变化、新颖有趣的教学过程,能提高学生的学习兴趣[3]。例如在讲解定理“任一排列经一个对换后奇偶性改变”的证明之前,可以用与该证明思路相类似的生活例子去引导。即:10个1至10岁的小朋友随意的站成一排。问题1.任意对换两个小朋友的位置分几种情况?问题2.对换两个相邻小朋友的位置,队中每个小朋友右侧比他自己年龄大的.人数是否改变?问题3.对换两个不相邻小朋友的位置后得到的新队形,如何由仅仅对话相邻两个小朋友的位置得到?这样的定理证明类比过程,会让学生感觉定理的证明不再那幺枯燥难懂,这样不仅可以提高学生的参与度,而且可以提高学生学习数学的自信心、兴趣和积极性。

3.注重教学过程中概念图的使用

概念图[4]是用节点代表概念,用连线代表概念间关系的一种图示法。在日积月累、循序渐进的学习过程中,为了有效地将所学知识、概念紧密的联系再一起,可以建立一个个概念图,进而有利于学生系统的、整体的把握所学知识。如图1的行列式概念图,借助图该概念图,有益于学生对行列式相关知识的掌握,从整体上理解掌握各知识点之间的联系,尽而达到学习事半功倍的效果。

4.注重知识概念的“相同”和“不同”

通过比较发现两种不同事物的“相同”和“不同”,针对相同之处,进行归纳总结,针对不同之处,分析其原因,深化理解记忆。比如:矩阵的学习中,关注以下几组公式的相同,通过归类总结便于学生记忆及应用。

在关注相同之余,注重不同。比如:行列式的加法仅仅是对同一行(列)的元素进行相加,但其他各行(列)元素不变; 而矩阵的加法则是两个相同行数、相同列数的矩阵对应位置上的元素均相加。再比如:数乘行列式仅仅是对某一行(列)的元素乘以该常数,而数乘矩阵则是该常数乘以矩阵的每一个元素。诸如此类的总结,对于学生的知识记忆和完善知识结构有一定的实际意义。

5.注重知识在生活中的应用

线性代数不仅与实际生活息息相关,而且具

有非常广泛的实用性。在现实生活中,一些比较难以解答的问题,倘若能将其转化为数学问题,且用线性代数相关知识去解答,这些问题将会得到比较简单的解决方法。比如:指派问题[5],即欲分配n个人去做n项工作,每个人做且仅做一项工作,若分配第i个人去做第j项工作,需花费cij单位时间,则如何分配工作才能使工人花费的总时间最少?该问题的求解如下:定义矩阵A=(xij)nxn,其中xij=1,第i人做第j项工作0,第i 人不做第j项工作,则该矩阵的每一行、每一列的元素之和等于就是该问题所满足的约束条件即线性方程组:=1,j=1,…n,,那幺满足该条件使目标函数:min达到最小值的解即是所求。总之,无论是数学的学习,还是其他课程的学习,都应该注重应用,让学生知道有什幺用如何用,这样才能引起他们的重视,提高学生学习的积极性。

参考文献:

[1]陈凤娟.线性代数的教学研究[J].高师理科学刊.,32(1).

[2]赵婷.线性代数的课堂趣味性教学研究[J].北京工业职业技术学院学报..15(2).

[3]王跃恒,李应求.关于以学生为中心的线性代数教学研究[J].中国大学教学.,8(1).

[4]王文文,金花等.“问题串―概念图”在线性代数教学中的应用研究[J].价值工程.2016,33(1).

[5]司守奎,孙玺菁.数学建模算法与应用[M].国防工业出版社.2016,7.

篇5:《线性代数》学习心得

《线性代数》学习心得800字

个人简介

佘可欣,中山大学国际金融学院2016级本科生,在《线性代数》的课程学习中获得了第一名的好成绩。

作为理科生,数学是极为重要,大学的专业也和数学密切相关,可偏偏数学却是我致命的弱项,在学好数学的路上付出了很多,也有所收获,但也仅仅只是皮毛。在这里分享我的经验,希望大家有所收获。

一开始学习线代时,便感觉到线代不同于高等数学的地方,在于它几乎从一开始就是一个全新的概念。其研究的范围通常都不是我们能想象到的二维空间,而是上升到n维空间,并且在线性代数的学习过程中,我们几乎都是跟一些新的概念,新的定理打交道,因此理解和记忆起来有相当大的困难,常常是花很久的时间还是理解不了。因此需要课前预习,上课紧跟老师讲解,下课练习课后习题以助更好的'理解掌握。

线性代数主要研究三种对象:矩阵、方程组和向量。这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法。因此,学习线性代数时应能够熟练地从一种理论的叙述转移到另一种中去。如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性。由此可见,掌握矩阵、方程组和向量的内在联系十分重要。

线代的概念多,比如对于矩阵,有对角矩阵、伴随矩阵、逆矩阵、相似矩阵等。运算法则多,比如求逆矩阵,求矩阵的秩,求向量组的秩,求基础解系,求非齐次线性方程组的通解等。内容相互纵横交错,在学到后面的知识点时常常出现需要和前面的知识点的应用,但经常记不起来,就需要不断地复习前面的知识点。要能够做到当题干给出一个信息时必须能够想到该信息等价的其他信息,比如告诉你一个矩阵是非奇异矩阵,它包含的信息有:首先明确它是一个n阶方阵,它的秩是n,它便是满秩矩阵,它所对应的n阶行列式不等于零,那么n个n维向量便线性无关,还有这个方阵是可逆方阵, 并且可以想到它的转置矩阵也是可逆的。

正是因为线性代数各知识点之间有着千丝万缕的联系,线性代数题的综合性与灵活性较大。因此课本的课后习题要多加练习。万变不离其宗,把握套路,老师也不会太为难我们,基本是在课后题上变形。

数学之路或艰辛,或顺利,四时之景或不同,而乐亦无穷也。数学之乐,得之心而寓之学也。祝大家都能找到适合自己的学习方法,在数学的探索中体味乐趣!

篇6:线性代数怎么学好

一、线性代数如果注意以下几点是有益的.

由易而难 线性代数常常涉及大型数组,故先将容易的问题搞明白,再解决有难度的问题,例如行列式定义,首先将3阶行列式定义理解好,自然可以推广到n阶行列式情形;

由低而高 运用技巧,省时不少,无论是行列式还是矩阵,在低阶状态,找出适合的计算方法,则可自如推广运用到高阶情形;

由简而繁 一些运算法则,先试用于简单情形,进而应用于复杂问题,例如,克莱姆法则,线性方程组解存在性判别,对角化问题等等;

由浅而深线性代数中一些新概念如秩,特征值特征向量,应当先理解好它们的定义,在理解基础之上,才能深刻理解它们与其他概念的联系、它们的作用,一步步达到运用自如境地。

二、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。

1、线性代数的概念很多,重要的有:

代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。

2、线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:

行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。

三、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。

线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。

四、注重逻辑性与叙述表述

线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解学生对数学主要原理、定理的理解与掌握程度,考查学生的抽象思维能力、逻辑推理能力。大家学习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

篇7:线性代数怎么学好

一、重视基本概念、基本性质、基本方法的理解和掌握

基本概念、基本性质和基本方法一直是考研数学的重点,线性代数更是如此。从多年的阅卷情况和经验看,有些考生对基本概念掌握不够牢固,理解不够 透彻,在答题中对基本性质的应用不知如何下手,因此,造成许多不应该的失分现象。所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌 握,多做一些基本题来巩固基本知识。

二、加强综合能力的训练,培养分析问题和解决问题的能力

从近十年特别是近两年的研究生入学考试试题看,加强了对考生分析问题和解决问题能力的考核。在线性代数的两个大题中,基本上都是多个知识点的综 合。从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。因此,在打好基础的同时,通过做一些综合性较强 的习题(或做近年的研究生考题),边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握。

三、注重分析一些重要概念和方法之间的联系和区别

线性代数的内容不多,但基本概念和性质较多。他们之间的联系也比较多,特别要根据每年线性代数考试的两个大题内容,找出所涉及到的概念与方法之 间的联系与区别。例如:向量的线性表示与非齐次线性方程组解的讨论之间的联系;向量的线性相关(无关)与齐次线性方程组有非零解(仅有零解)的讨论之间的 联系;实对称阵的对角化与实二次型化标准型之间的联系等。掌握他们之间的联系与区别,对大家做线性代数的两个大题在解题思路和方法上会有很大的帮助。

篇8:怎么学好线性代数

线性代数学习方法

1向量很重要

线代是一门比较费脑子的课,无论是行列式,矩阵,还是方程组其实都是研究的向量,可以说线代的核心就是向量以及向量关系,只要把向量这一章学好了,线代是没有问题的。同时线代的每一章其实就是一种研究角度,做题时往往要从多个角度思考问题。

2上课不要睡觉哦

如果前一天晚上睡得太晚,第二天早上的线代课就会变成“催眠课”。所以,第二天有线代课的同学们晚上要睡得早一点,“卧谈会”开得短一点。

3预习

如果你觉得上课跟不上老师的思路那么,请预习。这个预习也有学问的呢,预习时要“把更多的麻烦留给自己”,即遇到公式、定理把证明部分盖住,自己试着想一下思路。当然,可以根据个人的实际情况适当调整,但要尽量多地自己思考。

4上课时间要抓紧

一定要重视上课听讲,不能使线代的学习退化为自学。上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?老师上课时的一句话就可能使你豁然开朗,所以上课时一定要“虚心”,即使老师讲的自己会也要听一下老师的思路。

线性代数6大必考点

一、行列式部分,强化概念性质,熟练行列式的求法

在这里我们需要明确下面几条:行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。另外范德蒙行列式也是需要掌握的;行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。

二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用

通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调.此外,伴随矩阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的细节。涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加以巩固。

三、向量部分,理解相关无关概念,灵活进行判定

向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。如何掌握这部分内容呢?首先在于对定义概念的理解,然后就是分析判定的重点,即:看是否存在一组全为零的或者有非零解的实数对。基础线性相关问题也会涉及类似的题型:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。

四、线性方程组部分,判断解的个数,明确通解的求解思路

线性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的求解与证明以及带参数的线性方程组的解的情况。通解的求法有两种,若为齐次线性方程组,首先求解方程组的矩阵对应的行列式的值,在特征值为零和不为零的情况下分别进行讨论,为零说明有解,带入增广矩阵化简整理;不为零则有唯一解直接求出即可。若为非齐次方程组,则按照对增广矩阵的讨论进行求解。

五、矩阵的特征值与特征向量部分,理解概念方法,掌握矩阵对角化的求解

矩阵的特征值、特征向量部分可划分为三给我板块:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相关题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、有关实对称矩阵的问题。

六、二次型部分,熟悉正定矩阵的判别,了解规范性和惯性定理

二次型矩阵是二次型问题的一个基础,且大部分都可以转化为它的实对称矩阵的问题来处理。另外二次型及其矩阵表示,二次型的秩和标准形等概念、二次型的规范形和惯性定理也是填空选择题中的不可或缺的部分,二次型的标准化与矩阵对角化紧密相连,要会用配方法、正交变换化二次型为标准形;掌握二次型正定性的判别方法等等。

篇9:线性代数课件

线性代数课件

一、简介

线性代数是代数学的一个分支,今天数学界一致认它作为一门独立学科诞生于上世纪30年代,因为吸纳了系统的线性代数内容的著作是在这一时期产生的,如Van的名著代数学第二卷就把线性代数作为其中的短短一章。

回顾线性代数的历史基础上,分析了关于线性代数的几个核心问题:第一介绍了几种关于线性代数基本结构问题的看法;第二介绍了关于线性代数的两个基本问题,即“线性”和“线性问题”;第三介绍了线性代数的研究对象;第四分析了线性代数的结构体系。

上世纪80年代以来,随着计算机应用的普及,线性代数理论被广泛应用到科学、技术和经济领域,因此线性代数也成为高等院校理工科各专业的一门基础课程,文章简述线性代数的相关核心核心问题。

二、线性代数的历史

线性代数是代数学的一个分支,今天数学界一致认它作为一门独立学科诞生于上世纪30年代,因为吸纳了系统的线性代数内容的著作是在这一时期产生的,如Van的名著代数学第二卷就把线性代数作为其中的短短一章。但是线性代数的一些初级内容如行列式、矩阵和线性方程组的研究可以追溯到二百多年前;19世纪四五十年代Grassmann创立了用符号表述几何概念的方法,给出了线性无关和基等概念,这标准着线性代数内容近代化开始;19世纪末向量空间的抽象定义形成,并在20世纪初被广泛用于泛函分析研究,从而使线性代数成为以空间理论为终结的独立学科,因此可以说线性代数是综合了若干项独立发展的数学成果而形成的。从上世纪六七十年代起线性代数进入了大学数学专业课程,在我国这门课程称为高等代数,它以线性代数为主体并纳入了一章多项式理论。

无论是高等代数或线性代数,这个课程有两个特点:一个特点是各部分内容相对独立,整个课程呈现出一种块状结构,原因是线性代数学科的形成过程本身就没有一条明确的主线。我们几乎可以找到从线性方程组,行列式,向量,矩阵,多项式,线性空间,线性变换中的任何一个分块开始展开的教材,其展开过程主要取决于作者串联这些分块的形式逻辑的脉络。另一个特点是内容抽象,要真正掌握线性代数的原理与方法必须具备较强的抽象思维能力,即对形式概念的理解能力和形式逻辑的演绎能力,而这两种能力要求几乎超越了大多数学生在中学阶段的能力储备,而必须在学习这门课程的过程中重塑。主要是这两个原因,线性代数被认为是一门非常难掌握的课程,而克服这一困难的关键就是针对线性代数课程的这两个特点进行有效的课程改革。

三、关于线性代数基本结构问题的看法

线性代数基本结构问题,学者们历来有许多不同的看法,较为常见的是以下几种:

第一种是以矩阵为中心。

这一看法认为整个线性代数以矩阵理论为核心,将矩阵理论视为各个内容联系的纽带。在求线性方程组、判定方程组的解以及研究线性空间问题时,矩阵理论是重要工具。例如正交矩阵和对称矩阵主要应用于欧氏空间和二次型方程问题中。可见,只要对矩阵知识有了全面系统的理解后,就能将各种问题都化解为矩阵理论中的一部分,引申为矩阵问题。

第二种是以线性方程组为中心。

这一关观点认为线性方程组是线性代数研究的基本问题。具体操作过程中,将线性方程组的理论和方法应用到各个章节,由此引出矩阵、行列式、向量等理论,最后列出方程组、求解,然后进一步应用,串联起各部分内容。这一理论较为系统、科学,常常被初学者采纳。

第三是一种线性代数体系,以线性变换和线性空间为核心。

在学习线性代数之前,学生要先掌握关系、集合、环、群、域等概念,形成对高等数学的研究对象、知识结构、表达方式的初步认识。线性代数体系依次安排了线性空间、内积空间、线性变化、矩阵概念和性质等章节。掌握线性变换基础后,再教学线性方程组求解知识,在此基础上,进一步引出特征向量、特征值和二次型理论。整个体系以线性代数为核心,内容介绍、理论讲解及方法系统化为一个整体。

第四是以向量理论为核心。

对二维、三维直角坐标系的研究是线性代数的起源。学生在中学时就已经了解了关于平面向量的一些基本知识,因此,将向量作为整个线性代数知识的核心,有利于使各部分内容的联系更加密切、理论体系更加完整完善,学生的空间概念也能得以加强。矩阵、行列式、线性方程组一般为研究维向量空间所必须的表示工具、向量的`线性相关性的判别工具)和未知向量的计算工具,从宏观讲它们独立于体系之外,从微观讲它们也是维向量空间的一些具体内容。而二次型仅仅是对称双线性函数的一个简单应用。

四、线性和线性问题

“线性”这个数学名词在中学数学课程中,学生从未接触过。而这一课程是大学数学的基础课程,学生刚进入大学,对这一词汇的具体内容知之甚少。所以在学习之前,学生必须对什么是“线性”有所了解,在“线性代数”这一课程中有对于“线性”概念的明确介绍。这是学习线性代数要解决的第一个基本问题,即什么是“线性”。

从整个数学全局来看线性代数,可将涉及到的数学问题分为两类:即线性问题和非线性问题。其中,对于线性问题的研究,历来有最完善的理论和最多的研究成果;并且,许多非线性问题往往也可以转化为线性问题解答。所以解决具体的数学问题时,首先应判断该问题是否属于线性问题,如果是线性问题该采用怎样的解决方法,如果不是线性问题,应考虑如何将其转化为线性问题。这是学习线性代数要解决的第二个基本问题:什么是“线性问题”,如何处理“线性问题”?

了解了什么是“线性”、什么是“线性问题”后,离完成线性代数的教学目的还有很长一段距离。如今的高校教育,一味灌输给学生行列式、向量、矩阵、线性变换等空洞的数学定理,指导学生用这些理论来思考线性代数的基本结构、具体应用等问题。教师在教学线性代数问题时更是一味强调理论的选择与应用,却忽视了学生发现问题、分析问题、解决问题的能力的培养。

五、线性代数的研究对象

稍微观察一下我们可以发现,中学的初等代数就是线性代数的前身,只是在其基础上的进一步抽象化。初等代数研究的多是具体的问题,运用加减乘除的运算方法即可解决问题;线性代数中则引入了许多新的概念,如向量、向量空间、集合、空间、矩阵等等,问题展现的形式发生了变化,要想解决问题,我们的思维方式也应该发生变化。涉及到新概念的数学问题往往都很抽象,如向量指的是既有数值又有具体方向的量;向量空间是许多量组成的集合,这一集合中的元素全都符合特定的运算规则;集合是具有某种属性的事物的总和;矩阵理论则是一种更加抽象化的理论,因此我们的研究方法和思维方式都要随之进行改变。如初等代数中的基本运算法则性代数中经常会失效,线性代数的研究对象是向量运算、矩阵运算和线性变换,解决问题时,需要采用一种特殊的运算方法。

综上所述,线性代数的学习中应重点培养两个方面的能力:

一个是知识掌握的能力的培养。介绍知识时应坚持从易到难、循序渐进。先掌握好中学的运算法则,再慢慢学习向量、矩阵知识,之后学习线性变换,最后综合学习线性运算。学生经过中学阶段的学习,完全掌握了加法和乘法这两种基础运算法则,简单了解了向量运算。矩阵知识相对于前者更加抽象,因此应放在之后学习。线性变换则是线性代数教学中的重点和难点所在,也是最容易被忽视的地方。由于线性变换可结合映射知识学习,而映射知识在中学数学和微积分教学中都有详细的介绍,在此基础上学生更容易理解线性变换及运算的相关知识,更容易解决矩阵特征值问题、线性方程组问题及二次型问题等。

另外一个是思维能力的培养。在学习中,注意引导学生带着问题学习,并在学习中进一步发现问题、解决问题,这是最有效的思维方式和学习方法。前文提到了学习线性代数必须先了解的两个基本问题:什么是“线性”、什么是“线性问题”。这两个基本问题应该始终贯穿性代数的学习过程中。无论在什么阶段的学习,都要注重理论知识和实际问题的有效结合。学生在掌握了一定的理论知识后,可尝试去解决相关的实际问题。在这一过程中,学生会加深对理论知识的理解,并进一步发现自身知识储备的不足之处。若单单追求知识的应用,而不加深自己的理论素养,最终也无法具备良好的思维能力。所以,在学习线性代数时,要培养好两方面的能力,使之相辅相成、相互促进。

结语:

20世纪后50年计算技术的高速发展,推动了大规模工程和经济系统问题的解决,使人们看到,线性代数和相关的矩阵模型是如微积分那样的数学工具,无所不在的线性代数问题,等待着各层次的工程技术人员快速精确地去解决相关线性代数问题。因此绝大对工科学生而言,数学课应该使他们有宏观的使用数学的思想,要使工程师了解工程中可能遇到的各种数学问题的类别,并且知道应该用什么样的数学理论和软件工具来解决,这是一种高水平的抽象。而了解线性代数的核心问题,无疑对线性代数课程的学习有重要的价值。

篇10:考研数学线性代数题型总结

考研数学线性代数题型总结

》考研复习的强化阶段已经结束,在这段时间,大家应该把所学的知识系统化综合化。数学题目千变万化,有各种延伸和变形,考生如果想在考研数学中取得好成绩,就一定要认真仔细的复习,重视三基(基本概念、基本方法、基本性质),多思考多总结,做到融会贯通。教材把线性代数的内容分为了六章:行列式、矩阵、线性方程组、向量、特征值和特征向量、二次型。考生在做题过程中,应该能发现,线性代数部分考察的知识点和题型都相对固定,以下我们针对考研数学,对线性代数部分的常考题型进行总结:

一、行列式常考的题型有:1.数值型行列式的计算,2.抽象型行列式的计算。

二、矩阵常考的`题型有:1.对矩阵的运算的考查,2.对逆矩阵的考查,3.初等变换,4.矩阵方程,5.矩阵的秩,6.矩阵的分块。

三、线性方程组与向量常考的题型有:1.向量组的线性表出,2.向量组的线性相关性,3.向量组的秩与极大线性无关组,4.向量空间的基与过渡矩阵,5.线性方程组解的判定,6.齐次线性方程组的基础解系,7.线性方程组的求解,8.同解与公共解。

四、特征值与特征向量常考的题型有:1.特征值与特征向量的定义与性质,2.矩阵的相似对角化,3.实对称矩阵的相关问题,4.综合应用。

五、二次型常考的题型有:1.二次型及其矩阵,2.化二次型为标准型,3.二次型的惯性系数与合同规范型,4.正定二次型。

kaoyan/

篇11:《线性代数》教学的一些思考论文

《线性代数》教学的一些思考论文

[摘要]

《线性代数》是工科高校中颇为重要的一门课,也是较抽象难学的一门课程。本文从理论与实践两方面以作者的体会与认识,提出《线性代数》教学抽象概念的讲解应注意的几点问题,阐释了如何进行《线性代数》课程的课堂教学,并且能收到良好的教学效果。

[关键词]

线性代数;数学概念;教学方法

《线性代数》是高等院校理、工类专业重要的数学基础课。它不但广泛应用于概率统计、微分方程、控制理论等数学分支,而且其知识已渗透到自然科学的其它学科,如工程技术、经济与社会科学等领域。不仅如此,这门课程对提高学生的数学素养、训练与提高学生的抽象思维能力与逻辑推理能力都有重要作用。但由于“线性代数”本身的特点,对其内容学生感到比较抽象,要深入理解与掌握代数的基本概念与基本理论学生感到相当吃力、难以理解。因此,为培养与提高学生应用数学知识、解决实际问题的能力,进一步研究这门课程的教学思想和方法对提高教学效果甚为重要。

一、加强基本概念的教与学

线性代数这一抽象的数学理论和方法体系是由一系列基本概念构成的。行列式、矩阵、逆矩阵、初等矩阵、转置、线性表示、线性相关、特征值与特征向量等抽象概念根植于客观的现实世界,有着深刻的实际背景,即是比较直接抽象的产物。高等数学与初等数学在含义与思维模式上的变化必然会在教学中有所反映。线性代数作为中学代数的继续与提高,与其有着很大不同,这不仅表现在内容上,更重要的是表现在研究的观点和方法上。在研究过程中一再体现由具体事物抽象出一般的概念,再以一般概念回到具体事物去的辨证观点和严格的逻辑推理。新生刚进入大学,其思维方式很难从初等数学的那种直观、简洁的方法上升到线性代数抽象复杂的方式,故思维方式在短期内很难达到线性代数的要求。大部分同学习惯于传统的公式,用公式套题,不习惯于理解定理的实质,用一些已知的定理、性质及结论来推理、解题等。

在概念的教学中,教师要研究概念的认识过程的特点和规律性,根据学生的认识能力发展的规律来选择适当的教学方式。因此,在概念教学中应注意以下几点。

1.合理借助概念的直观性

尽管抽象性是《线性代数》这门课的突出特点,直观性教学同样可应用到这门课的教学上,且在教学中占有重要地位。欧拉认为:“数学这门科学,需要观察,也需要实验,模型和图形的广泛应用就是这样的例子。”直观有助于概念的引入和形成。如介绍向量的概念,尽管抽象,但它具有几何直观背景,在二维空间、三维空间中,向量都是有向线段,由此教学中可从向量的几何定义出发讲解抽象到现有形式的过程,降低学生抽象思考的难度。

2.充分利用概念的实际背景和学生的经验

教师在教学中应充分利用学生已有的数学现实和生活经验,引导和启发学生进行概念发现和创造。如在讲解n阶行列式,首先从学生已掌握的二元、三元一次方程组的求解入手,然后求出方程组的解由二阶、三阶行列式表示,分析二阶、三阶行列式的特点。

二阶行列式,不难看出:它含有两项,若不考虑符号,每项均是来自不同行不同列的两个元素的乘积,那么会提出这样的问题:右边各项之前所带的正负号有什么规律?同样的,三阶行列式若不考虑符号,它含有3!=6项,每项也是来自不同行不同列的三个元素的乘积,并且包含了所有由不同行不同列的三个元素的组合。为解决n阶行列式,又引出排列的概念、性质,介绍奇偶排列后,又回到我们提出的问题上,可以发现,行标按自然排列,列标排列为奇排列时,该项为负;列标排列为偶排列时,该项为正(问题得到解决)。经过这一过程,学生对n阶行列式已有接触和了解,此时可给出n阶行列式定义,这样一来,学生就容易理解和掌握n阶行列式的性质了。

3.注意概念体系的建立

R.斯根普指出:“个别的概念一定要融入与其它概念合成的概念结构中才有效用。”数学中的概念往往不是孤立的,理解概念间的联系既能促进新概念的引入,也有助于接近已学过概念的本质及整个概念体系的建立。如矩阵的秩与向量组的秩的联系:矩阵的秩等于它的行向量组的秩,也等于它的列向量组的秩;矩阵行(列)满秩,与向量组的线性相关和线性无关也有一定的联系。

二、学生要掌握科学的学习方法

学习重在理解,学生必须在理解、领悟其深刻含义的基础上记忆定义、定理及一些结论,才能收到理想的效果。线性代数的最大特点就是:知识体系是一环扣一环,环环相连的`。前面的知识是后面学习的基础,如用初等变换求矩阵的秩熟练与否,直接影响求向量组的秩及极大无关组,进一步影响到求由向量组生成的向量空间的基与维数;又如求解线性方程组的通解熟练与否,会影响到后面特征向量的求解,以及利用正交变换将二次型化为标准型等。因此,学习线性代数,一定要坚持温故而知新的学习方法,及时复习巩固,为此,教师课前的知识回顾以及学生提前预习是十分必要的。

三、加强对学生解题的基本训练

一定量的典型练习题能有助于学生深化对所学知识的理解,培养学生一题多解的能力,解题后反思,及时总结解题思路和方法。如证明抽象矩阵的可逆,就有很多方法,一是用定义。二是用秩的有关命题。三是借助于特征值理论。四是证明矩阵的行列式不为零等。

四、培养与激发学生的学习兴趣

兴趣是最好的老师。教师一方面在传授知识,另一方面要鼓励学生有针对性的设计他们的目标,这样,他们才肯自觉钻研,乐于钻研。同时,课堂教学中可选择近年来研究生入学考题及一些与实际联系较紧的题目讲解或练习,以激发学生的学习欲望,并给他们带来成功的满足。此外,还可以适当介绍一些有趣的应用典范或教学史来激发学生的学习热情,提高他们的学习兴趣。

五、发挥多媒体优势,增强教学效果

多媒体教学成为当前高校教学模式的重要手段。教师只有把传统教学手段、教师自己的特色和多媒体辅助教学三者有机结合起来,才能真正发挥多媒体课堂教学的效果。总之,教师在教学中所做的一切,其目的应在于既教会他们有用的知识,又教会学生有益的思考方式及良好的思维习惯。

参考文献:

[1]张向阳.线性代数教学中的几点体会.山西财经大学学报(高等教育版),.

[2]于朝霞.线性代数与空间解析几何.北京:中国科学技术出版社,.

篇12:探究线性代数多媒体教学论文

探究线性代数多媒体教学论文

[论文摘要]随着计算杌的普及与应用,多媒体教学已经逐步走进课堂,而且在现代教学中起着越来越重要的作用。本文分析了线性代数多媒体教学的优势与不足,并根据多年从事线性代数教学的经验,给出了如何将多媒体技术运用于线性代数教学的几点建议。

[论文关键词]线性代数 多媒体教学 传统教学

线性代数是理工类、经管类数学课程最重要的基础课之一,其基本内容是讲授向量空间和矩阵的理论。线性代数在数学、力学、物理学和技术学科中有着各种重要应用,因而它在各种代数分支中占居首要地位。在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分。随着科学的发展,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。线性代数对于培养学生的逻辑推理和抽象思维能力、空间直观和想象能力具有重要的作用,但普遍被学生认为是比较困难的一门课程,主要的困难是太抽象。多媒体作为一种现代的教育技术,在很多方面显示出其优越性,如何将多媒体技术与传统的教学手段良好的结合并应用于线性代数的教学中,是一个值得关注的问题。

一、线性代数多媒体教学的优势

1.扩大课堂容量,提高教学效率

教学内容多,课时少一直是很多高等学校线性代数课程的一个重要矛盾。我们都知道线性代数课堂教学的特点是板书量大,费时,费力,而用多媒体教学一些重要的定义、定理作成课件直接播放,节省了教师的板书时间,同时增加了更多的'讲解和补充其他内容的时间,可以在短时间内向学生提供更多更有效的信息,有效节省了师生的时间和精力,提高了课堂的学习效率。

2.活跃课堂气氛,增强学习兴趣

传统教学中都是教师在讲台上讲解,学生面对黑板这样单一的教学模式,利用多媒体技术,通过图像、声音、动画等形式,可以形象直观的展现一些问题的求解过程。另外,利用多媒体还可以增加数学史,数学家轶事等内容,拓展学生的知识面,从而提高了学生的注意力,降低了传统授课方式的枯燥感,增加了学生的学习兴趣。

3.提高教学质量,促进能力培养

线性代数是一门应用性很强的学科,而传统的教学模式教学效果差,不利于学生创新意识和创新能力的培养。随着科学技术的不断发展,计算机的大规模普及,使得数学实验和数学模型进入到教学环节,运用线性代数中的矩阵、线性方程组等内容建立投入产出模型、Leslie人口模型等数学模型,有利于培养学生分析问题和解决问题的能力,为培养创新型人才奠定基础。

二、线性代数多媒体教学的不足

随着科学技术的发展,教学手段的日益现代化,多媒体教学已成为现代课堂教学的主要教学手段之一,其教学手段的直观性,教学内容的丰富性,使其具有广阔的应用前景。但多媒体作为一种新兴的教学手段,必然会存在着一定的不足,尤其在线性代数这门具有高度逻辑性和严密推理性的学科的教学中。例如,节奏快,不利于保持学生思维的连续性,不利于学生记笔记;纠错,应变能力差,不利于教师临场的即兴发挥;过多色彩动画、音效使学生眼花缭乱,分散学生注意力;不利于教师和学生良好的互动。"

三、线性代数多媒体教学的思考

线性代数教学中需要多媒体技术,但如何合理的将多媒体技术应用于线性代数课程的教学,是一个值得我们思考的问题。下面结合本人多年线性代数课程的教学经验,对于多媒体技术在线性代数课程中的运用给出一些建设性的建议。

1.虽然多媒体教学相对于传统的教学模式有很多的优势,但并不是所有的教学内容都适合运用多媒体教学,尤其对于线性代数这门具有很强逻辑性的学科。这就需要教师认真备课,钻研教材,根据教学内容有选择的选用多媒体教学。当然,传统的教学模式也有其优势所在,课堂上将传统的教学模式与多媒体教学良好的结合,做到优势互补,以期达到最好的教学效果。

2.色彩、声音、动画是多媒体教学的一大特色,也是最容易吸引学生的注意力,产生学习兴趣的一大亮点,但这些元素的运用不宜过多,否则将会适得其反。因此,教师在制作课件时应该注意,色彩要鲜明,但不要太花哨,声音和动画的运用不要太频繁,以免分散学生的注意力,影响学生对教学内容的理解。而且要充分利用这些优势,例如,对于一些重要的内容要用特殊的颜色加以强调,以加深学生的印象,加强学生的记忆;对于一些概念之间的联系可以采用动画的形式进行演示,使其更直观、形象,易于学生理解。

3.在进行多媒体教学时一定要注意教师与学生之间的交流和互动,把握课堂节奏,不要只顾点击鼠标,照本宣科,让学生感觉是在听报告,而忽略了学生的理鹪和接受情况。课堂上,要多提问,适当的做练习并走到学生中间,了解学生的掌握情况,以便及时调整课堂教学进度,避免教学进度过快,影响教学质量。

4.对于已经讲授完的课件可以传到校园网上,供学生浏览和下载,便于学生温习和记笔记。另外,对于一些习题,思考题也可以在网上给出简要的解题思路,供学生参考和借鉴。

四、结束语

多媒体教学作为现代化教学的一种手段在优化教学效果中起着越来越重要的作用。在教学过程中,恰当地选择运用多媒体技术,可以激发学生创造性思维,提高学生的洞察力,有效地实施素质教育。当然,多媒体也有其局限性,随着科学的发展,其作用将会更大,其局限性也将逐步减小.

【线性代数教学总结】相关文章:

1.线性代数课件

2.线性代数中运用多媒体教学的思考

3.考研数学 线性代数知识点

4.考研考研线性代数知识点归类

5.考研数学 线性代数五大考点解析

6.线性代数教学方法的改革与实践

7.考研数学:线性代数八种思维定势

8.考研数学线性代数重要知识点分布

9.考研数学 线性代数主要考点与要求

10.考研数学冲刺攻略之线性代数:融汇贯通

下载word文档
《线性代数教学总结.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部