八年级数学上册变量与函数教学反思
“库哇库哇”通过精心收集,向本站投稿了19篇八年级数学上册变量与函数教学反思,以下是小编为大家整理后的八年级数学上册变量与函数教学反思,欢迎阅读与收藏。
篇1:变量与函数八年级上册数学测试题
变量与函数八年级上册数学测试题
一、填空题(每小题3分,共24分)
1.矩形的面积为 ,则长 和宽 之间的关系为 ,当长一定时, 是常量,
是变量.
2.飞船每分钟转30转,用函数解析式表示转数 和时间 之间的关系式是 .
3.函数 中自变量 的取值范围是
4.函数 中,当 时, ,当 时, .
5.点 在函数 的图象上,则点 的坐标是 .
6.函数 中自变量的取值范围为 .
7.下列:① ;② ;③ ;④ ,具有 函数关系(自变量为 )的是 .
8.圆的面积 中,自变量 的取值范围是 .
二、选择 题(每小题3分,共24分)
1.在圆的周长公式 中,下列说法错误的.是( )
A. 是变量,2是常量 B. 是变量, 是常量
C. 是自变量, 是 的函数
D.将 写成 ,则可看作 是自变量, 是 的函数
2. 边形的内角和 ,其中自变量 的取值范围是 ( )
A.全体实数 B.全体整数 C. D.大于或等于3的整数
3.在下表中,设 表示乘公共汽车的站数, 表示应付的票价(元)
(站) 1 2 3 4 5 6 7 8 9 10
(元) 1 1 2 2 2 3 3 3 4 4
根据此表,下列说法正确的是( )
A. 是 的函数 B. 不是 的函数 C. 是 的函数 D.以上说法都不对
4.油箱中有油20升,油从管道中匀速流出,100分钟流成.油箱中剩油量 (升)与流出的时间 (分)间的函数关系式是( )
A. B. C. D.
5.根据下表写出函数解析式( )
A. B. C. D.
6.如果每盒圆珠笔有12支,售价为18元,那么圆珠笔的售价 (元)与支数 之间的函数关系式为( )
A. B. C. D.
7.设等腰三角形(两底角 相等的三角形)顶角的度数为 ,底角的度数为 ,则有( )
A. ( 为全体实数) B.
C. D.
8.下列有序实数对中,是函数 中自变量 与函数 值 的一对对应值的是( )[ B. C. D.
三、解答题(共40分)
1.(10分)如图1是 襄樊地区一天的气温随时间变化的图象,根据图象回答:在这一天中:
(1)气温 (℃) (填“是”或“不是”)时间 (时)的函数.
(2) 时气温最高, 时气温最低,最高汽温是 ℃,最低气温是 ℃.
(3)10时的气温是 ℃.
(4) 时气温是4℃.
(5) 时间内,气温不断上升.
(6) 时间内,气温持续不变.
2.(10分)按图2方式摆放餐桌和椅子.若用 来表示餐桌的张数, 来表示可坐人数,则随着餐桌数的增加:
(1)题中有几个变量?
(2)你能将其中的一个变量看成是另一个变量的函数吗?如果是,写出函数解析式.
w
3.(10分)已知水池中有8 00立方米的水,每小时抽50立方米.
(1)写出剩余水的体积 立方米与时间 (时)之间的函数关系式.
(2)写出自变量 的 取值范围.
(3)10小时后,池中还有多少水?
(4)几小 时后,池中还有100立方米的 水?
4.(10分)某市第五中学校办工厂今年产值是15万元,计划今后 每年增加2万元.
(1)写出年产值 (万元)与今后年数 之间的函数关系式.
(2 )画出函数图象 .
(3)求 5年后的 年产值.
5.(12分) 如图3所示,结合表格中的数据回答问题:
梯形个数 1 2 3 4 5 …
图形周长 5 8 11 14 17 …
(1)设图形的周长为 ,梯形的个数为 ,试写出 与 的函数解析式.
(2)求当 时的图形的周长.
篇2: 变量与函数教学反思
变量与函数教学反思
本课例是学习函数后的第二个课时,但是安排的容量比较大,包括了“函数”这比较抽象的概念理解,函数自变量取值范围及函数值的计算,从学生的掌握情况看效果还比较好。
首先,本课例在处理“函数”这一抽象概念时,紧紧抓住“对的确定的一个值,都有唯一的值与其对应”中的“唯一”,并通过不断地运用具体例子来让学生感受“唯一”。
其次,本课例的过渡处理得比较好。例如,在讲授自变量的取值范围时,先通过一般的没背景要求的式子分类学习,再到实际问题的过渡,让学生非常清晰地知道实际问题与一般代数式之间是区别比较大的,并且对于实际问题的自变量取值范围的思考与计算都详细讲授。
再次,本课例的重难点处理得比较好。学生对函数的概念及自变量的取值范围的理解是难点,本节课进行了重点讲授,而求函数值的问题则是比较简单,进行了略讲。
第四,本课例还注重培养学生注意问题间的区别,防止学生概念混乱。
本课例从检测的效果与培养学生的思维来看是一个不错的课例。
第二篇不等式解集教学反思:
这节课主要让学生理解并掌握不等式的定义,不等式的解,不等式的解集,解不等式的意义,会把解集在数轴上表示出来。以学生课外预习为前提开展教学的。
课本中的实际问题情境创设,都是由学生课外自学来完成,从而给予学生更多的学习思考时间,研究这些问题,可以使学生体会到现实生活中存在着大量的不等关系,不等式是现实世界中不等关系的一种数学表示形式,它也是刻画现实世界中量与量之间关系的有效模型。教学中要突出知识之间的内在联系。不等式与方程一样,都是反映客观事物变化规律及其关系的模型。在教学中,类比已经学过的方程知识,引导学生自己去探索、发现、甄别,从而得出一元一次不等式、不等式的解与解集的意义。引导学生类比等式及方程的'有关知识,于知识的迁移过程中较好地体悟所学的内容。学生数学语言概括能力,互助学习,合作学习的能力得到提高,数形结合思想渗透较好
教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果。因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程。这种教学方法以“生动探索”为基础,先“引导发现”,后“讲评点拨”,让学生在克服困难与障碍的过程中充分发挥自己的观察力、想像力和思维力,再加上多媒体的运用,使学生真正成为学习的主体。
但是,课后及作业中出现以下错误
1、不大于,不小于,弄不清楚;
2、用不等式表示某些语句,个别学生读不懂题意;
3、用不等式解决简单的实际问题,出现错误较多;
4、不能较好的运用所学知识解决相关问题。
5、一些解题中的细节要注意,例如用数轴来表示解集时,折线向左向右学生没有真正是什么意思,什么时候用实心圆点还是空心圆圈没有区别等等。
6、课堂教学时间,多听学生讲出他们自己的的理解和解题思路,有利于培养学生的数学语言表达能力。
今后教学中,要注重基础知识的学习,满足学生多样化的学习需求的同时,注意学生各方面能力的培养和学习习惯的培养。
教学反思
本课例是学习函数后的第二个课时,但是安排的容量比较大,包括了“函数”这比较抽象的概念理解,函数自变量取值范围及函数值的计算,从学生的掌握情况看效果还比较好。
首先,本课例在处理“函数”这一抽象概念时,紧紧抓住“对的确定的一个值,都有唯一的值与其对应”中的“唯一”,并通过不断地运用具体例子来让学生感受“唯一”。
其次,本课例的过渡处理得比较好。例如,在讲授自变量的取值范围时,先通过一般的没背景要求的式子分类学习,再到实际问题的过渡,让学生非常清晰地知道实际问题与一般代数式之间是区别比较大的,并且对于实际问题的自变量取值范围的思考与计算都详细讲授。
再次,本课例的重难点处理得比较好。学生对函数的概念及自变量的取值范围的理解是难点,本节课进行了重点讲授,而求函数值的问题则是比较简单,进行了略讲。
第四,本课例还注重培养学生注意问题间的区别,防止学生概念混乱。
本课例从检测的效果与培养学生的思维来看是一个不错的课例。
篇3:《变量与函数》教学反思
通过《变量与函数》的教学,本人对概念课的教学设计与教学实践有了更深入的了解
本设计呈现的课堂结构为:
(1)揭示学习目标;
(2)引入数学原型;
(3)抽象出数学现实,逐步达致数学形式化的概念;
(4)巩固概念练习(概念辨析);
(5)小结(质疑)
一、如何揭示学习目标
概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概念?数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入.初中涉及的函数概念的核心是“量与量之间的特殊对应关系”.本课中,本人在导言中提出两个问题:“引例1,《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高.你知道其中的道理吗?”、“引例2.我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗?”学生对上述问题既熟悉又感到意外.问题1涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系.上述问题,不仅仅是引起学生的注意,更重要的是让学生了解客观世界中量与量之间联系的多样性、复杂性,而函数研究的正是量与量之间的各种关系中的“特殊关系”.数学研究有时从最简单、特殊的情况入手,化繁为简.让学生明确,这一节课我们只研究两个量之间的特殊对应关系.“特殊在什么地方?”学生需带着这样的问题开始这一课的学习.概念的引入应具有“整体观”,不仅要提供符合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的“一对多”关系等),使学生在更广泛的背景中经历筛选、提炼出新的数学知识的过程,逐步领悟“化繁为简”的数学研究方法.当然,这里的问题是作为研究“背景”呈现,教学时应作“虚化”处理,以突出主要内容。
二、如何选取合适的数学原型
从数学的“学术形态”看,数学原型所蕴藏的数学素材应与数学概念的内涵相一致;从数学的“教育形态”看,数学原型应真实、简洁、简单.真实指的是基于学生的生活现实、数学现实,它可以是生活中的实例,也可以是学生熟悉的动漫故事、童话故事等.简洁、简单指的是问题的表述应简洁,问题情境的设置要尽可能简单,全体学生对情境中的问题不应存在太大的理解困难,设计的问题情境要能突出将要学习的新知识的本质.本设计采用了三个数学原型的问题:问题1,“票房收入与售出票数问题”(可用解析式表示);问题2,成绩登记表中的一次数学测试的“成绩与学号问题”(表格表示);问题3,“气温变化与时间问题”(图象表示).这三个问题从不同层面、不同角度体现函数的“单值对应关系”,也都是学生生活中的真实问题,问题简单易懂,学生容易基于上述生活实例抽象出新的数学概念.由于不少学生在理解“弹簧问题”时面临列函数关系式的困难,可能冲淡对函数概念的学习,故本节课没有采用该引例。对于繁难的概念,我们更应注重为学生构建学生所熟悉的、简单的数学现实,化繁为简、化抽象为形象.过难、过繁的背景会成为学生学习抽象新概念的拦路虎。
三、如何引领学生经历数学化、形式化的过程
“数学教学是数学活动的教学”,面对抽象的数学内容,老师会想方设法创设易于学生理解的数学情境.但如何从具体的实例中提炼出数学的素材、形式化为数学知识是教学的关键环节.从具体情境到数学知识的形式化,需要教师为学生搭建合适的“脚手架”,提出能引发学生思考、过渡到数学形式化的问题.本人在学生完成问题情境的几个问题后,提出系列问题“上述几个问题中,分别涉及哪些量的关系?哪些量的变化会引会另一个量的变化?
通过哪一个量可以确定另一个量?”在与学生的交流过程中把重点内容板书,板书注重揭示两个量间的关系,引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量.由问题1~3的共性“单值对应关系”与“脚印与身高”问题中反映的“一对多关系”进行对比抽象出函数的概念,逐步了解如何给数学概念下定义,并理解概念的本质特征。
四、如何引用反例
学生对概念的理解需要经历一个从模糊到清晰的过程,通过正例与反例的对照,才能准确理解概念的内涵.反例引用的时机、反例的量要恰到好处.过早、过多的反例会干扰学生对概念的准确理解.概念生成的前期提供的各种量的关系中的实例提供的是一个更为广泛的背景,让学生经历从各种关系中抽象出“特殊的单值对应关系”,从而体会产生函数概念的背景.这样的引入有利于避免概念教学中“一个定义,三点注意”的倾向。
在备课时,我想从“气温问题”中的函数图象引导学生发现时间t取定一个值时,所得T的对应值只有一个,学生习惯性地提出问题“温度T取定一个值时,时间t是否唯一确定?”全体同学从正反两个方面认识“唯一确定”的含义,在这样的基础上再归纳出函数的定义,学生较好地掌握函数中的单值对应关系.而在(2)班实际上课时,在概念的形成前期,忙中出漏,没有抓住“气温问题”中的函数图象讲解“唯一确定”,特别是没有从反面(温度T=8,时间t=12~14)帮助学生理解“唯一性”,也没有强化“脚印与身高”反映的“一对多关系”,只在涉及“单值对应关系”的实例基础上引出概念,也跳过后面提到的三个反例,学生在后面的概念辨析练习中错漏较多,为纠正学生的理解花了九牛二虎之力。
后来在(1)班上课时,在完成例1、例2的教学后,还用到如下反例:问题2变式“在这次数学测试中,成绩是学号的函数吗?”、问题3变式“北京春季某一天的时间t是气温T的函数吗?”、练习2(3)变式“汽车以60千米/秒的速度匀速行驶,t是s的函数吗?”,学生借助这三个逆向变式,根据生活经验理解“两个量间的对应关系”是否为“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,从而更好地理解自变量与函数的关系,更重要的是让学生养成逆向思维的习惯。
篇4:《变量与函数》教学反思
变量与函数的意义是学生难以理解的概念,本课的学习必须用足力气,怎样引起学生的重视,除了学前动员,还有就是利用课本的编排特征加以说明,一般数学新知识的引进有一两个引例就可以了,本课为了引进新知识,课本上安排了五个引例!
在课堂学习时,五个还是要一个一个地研究过去,紧紧围绕着函数的定义解读,初步领会引例的意图,还要舍得用很到的篇幅举出一些变化的实例,指出其中的常量和变量,开始学生举出了几个例子,再由学习小组讨论交流,每个小组都收集五个以上的实例。安排这个活动的意图是让学生感知现实生活中有很多变化着的量,并且两个变化着的量都有各自的数量关系、我们要善于发现这些数量关系,用数学的眼光观察现实世界。再结合课本上的五个引例和学生举出的实例分析解剖,得到函数的概念(一般地,在某个变化的过程中,有两个变量x与y,对于其中一个变量x的每一个确定的值,另一个变量y都有唯一确定的值与其对应,那么x叫做自变量,y叫做x的函数)。对照定义再回到五个引例及学生举出的实例,体会函数的意义。
函数定义的关键词是:“两个变量”、“唯一确定”、“与其对应”;函数的要点是:
1有两个变量,
2一个变量的值随另一个变量的值的变化而变化,
3一个变量的值确定另一个变量总有唯一确定的值与其对应;
函数的实质是:两个变量之间的对应关系;学习函数的意义是:用运动变化的观念观察事物。与学习进行仔细的研究,有助于函数意义的理解,但是,不可能在一课的学时内真正理解函数的意义,继续布置作业:每个同学列举出几个反映函数关系的实例,培育学生用函数的观念看待现实世界,最后,我还说明了,函数的学习,是我们数学认识的第二个飞跃,代数式的学习,是数学认识的第一次飞跃:由具体的数、孤立的数到一般的具有普遍意义的数,函数的学习,是由静止的不变的数到运动变化的数。
作了上面的学习过程,使我们这一课更加厚重。
篇5:《变量与函数》教学反思
函数定义的关键词是:“两个变量”、“唯一确定”、“与其对应”;函数的要点是:1 有两个变量,2 一个变量的值随另一个变量的值的变化而变化,3 一个变量的值确定另一个变量总有唯一确定的值与其对应;函数的实质是:两个变量之间的对应关系;学习函数的意义是:用运动变化的观念观察事物。与学习进行仔细的研究,有助于函数意义的理解,但是,不可能在一课的学时内真正理解函数的意义,继续布置作业:每个同学列举出几个反映函数关系的实例,培育学生用函数的观念看待现实世界,最后,我还说明了,函数的学习,是我们数学认识的第二个飞跃,代数式的学习,是数学认识的第一次飞跃:由具体的数、孤立的数到一般的具有普遍意义的数,函数的学习,是由静止的不变的数到运动变化的数。
在函数概念的教学中,应突出“变化”的思想和“对应”的思想。从概念的起源来看,函数是随着数学研究事物的运动、变化而出现的,他刻画了客观世界事物间的动态变化和相互依存的关系,这种关系反映了运动变化过程中的两个变量之间的制约关系。因此,变化是函数概念产生的源头,是制约概念学习的关节点,同时也是概念教学的一个重要突破口。教师可以通过大量的典型实例,让学生反复观察、反复比较、反复分析每个具体问题的量与量之间的变化关系,把静止的表达式看动态的变化过程,让他们从原来的常量、代数式、方程式和算式的静态的关系中,逐步过渡到变量、函数这些表示量与量之间的动态的关系上,使学生的认识实现
为了快速明了的引出课题,课前让学生收集一些变化的实例,从学生的生活入手,开门见山,来指明本节课的学习内容。本课的引例较为丰富,但有些内容学生解决较为困难,于是我采取了三种不同的提问方式:1.教师问,学生答;2.学生自主回答;3.学生合作交流回答。为了较好的突出重点突破难点,在处理教学活动过程中,让学生思考每个变化活动中反映的是哪个量随哪个量的变化而变化,并提出一个量确定时另一个量是否唯一确定的问题,在得出变量和常量概念的同时渗透函数的概念.为了更好的让学生理解变量和常量的意义,由“问题中分别涉及哪些量?哪些量是变化的,哪些量是始终不变的?”一系列问题,在借助生活实例回答的过程中,归纳总结出变量与常量的概念,并能指出具体问题中的变量与常量。函数的概念是把学生由常量数学的学习引入变量数学的学习的过程,学生初步接触函数的概念,难以理解定义中“唯一确定”的准确含义,我设置了以下二个问题:1.在前面研究的每个问题中,都出现了几个变量?它们之间是相互影响,相互制约的。2.在二个变量中,一个量在变化的过程中每取一个值,另一个量有多少个值与它对应?来理解具体实例中二个变量的特殊对应关系,初步理解函数的概念。为了进一步让学生理解“唯一对应”关系,借助函数图像,使学生直观的感受二个变量之间特殊对应关系-----唯一对应。通过这种从实际问题出发的探究方式,使学生体验从具体到抽象的认识过程,及时给出函数的定义。再从抽象转化到实际应用中去,加深学生对函数概念的理解。为了加强学生辨析函数的能力,我准备了一道思考题,Y2=X中对于X的每一个值Y都有唯一的值与之对应吗?Y是X的函数吗?为什么?帮助学生把握概念的本质特征,注重学生的过程经历和体验。变量与函数的概念是学生数学认识上的一次飞越,所以我根据学生的认知基础,创设一定条件下的现实情景,使学生从中感受到变量与函数的存在和意义,体会变量与函数之间的相互依存关系和变化规律,遵循从具体到抽象、感性到理性的认知规律,以教师为主导,学生为主体的教学原则,引导学生探究新知。让学生领悟到现实生活中存在的多姿多彩的数学问题,并能从中提出问题,分析问题和解决问题,并培养学生合作意识,探究和应用的能力,使学生真正成为数学学习的主人。
篇6:《变量与函数》教学反思
这节课主要让学生理解并掌握不等式的定义,不等式的解,不等式的解集,解不等式的意义,会把解集在数轴上表示出来。以学生课外预习为前提开展教学的。
课本中的实际问题情境创设,都是由学生课外自学来完成,从而给予学生更多的学习思考时间,研究这些问题,可以使学生体会到现实生活中存在着大量的不等关系,不等式是现实世界中不等关系的一种数学表示形式,它也是刻画现实世界中量与量之间关系的有效模型。教学中要突出知识之间的内在联系。不等式与方程一样,都是反映客观事物变化规律及其关系的模型。在教学中,类比已经学过的方程知识,引导学生自己去探索、发现、甄别,从而得出一元一次不等式、不等式的解与解集的意义。引导学生类比等式及方程的有关知识,于知识的迁移过程中较好地体悟所学的内容。学生数学语言概括能力,互助学习,合作学习的能力得到提高,数形结合思想渗透较好
教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果。因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程。这种教学方法以“生动探索”为基础,先“引导发现”,后“讲评点拨”,让学生在克服困难与障碍的过程中充分发挥自己的观察力、想像力和思维力,再加上多媒体的运用,使学生真正成为学习的主体。
但是,课后及作业中出现以下错误
1、不大于,不小于,弄不清楚;
2、用不等式表示某些语句,个别学生读不懂题意;
3、用不等式解决简单的实际问题,出现错误较多;
4、不能较好的运用所学知识解决相关问题。
5、一些解题中的细节要注意,例如用数轴来表示解集时,折线向左向右学生没有真正是什么意思,什么时候用实心圆点还是空心圆圈没有区别等等。
6、课堂教学时间,多听学生讲出他们自己的的理解和解题思路,有利于培养学生的数学语言表达能力。
今后教学中,要注重基础知识的学习,满足学生多样化的学习需求的同时,注意学生各方面能力的培养和学习习惯的培养。
篇7:《变量与函数》教学反思
函数一直是初中数学教学的重点,当然也是难点。本节课作为函数教学的第一节,其重要性不言而喻。如果上好了这节课,可以说接下来同学们对函数的理解程度就大大加深,对后续教学的帮助将非常大。
经过全组教师的集体备课后,我在本节课上淡化了自变量与因变量的区分,而是把重点放在了函数概念的理解以及因变量的唯一性上面。课上完之后,感觉学生们对唯一性的理解还是比较透彻的,但对于函数的概念理解还存在一知半解的现象,尤其是对于谁是谁的函数方面理解较差。
在评课的时候,各位老师都提出了中肯的意见,我意识到我的前面几分钟自习时间仅仅只是为了体现’先学后教‘的思想,而缺乏实际性的指导;我还认识到我对变量与常量的讲授没有和前面4个问题有机结合,导致了结构分裂;我还发现了我在节奏掌控方面还是犯了老毛病:先松后紧等等一系列的不足。在此感谢给我提出宝贵意见的各位领导以及同事们。
在今后的教学中,我会继续努力,让学生的主体地位得到体现的同时,不断加强教师的主导作用。
篇8:《变量与函数》教学反思
本课例是学习函数后的第二个课时,但是安排的容量比较大,包括了“函数”这比较抽象的概念理解,函数自变量取值范围及函数值的计算,从学生的掌握情况看效果还比较好。
首先,本课例在处理“函数”这一抽象概念时,紧紧抓住“对的确定的一个值,都有唯一的值与其对应”中的“唯一”,并通过不断地运用具体例子来让学生感受“唯一”。
其次,本课例的过渡处理得比较好。例如,在讲授自变量的取值范围时,先通过一般的没背景要求的式子分类学习,再到实际问题的过渡,让学生非常清晰地知道实际问题与一般代数式之间是区别比较大的,并且对于实际问题的自变量取值范围的思考与计算都详细讲授。
再次,本课例的重难点处理得比较好。学生对函数的概念及自变量的取值范围的理解是难点,本节课进行了重点讲授,而求函数值的问题则是比较简单,进行了略讲。
第四,本课例还注重培养学生注意问题间的区别,防止学生概念混乱。
本课例从检测的效果与培养学生的思维来看是一个不错的课例。
篇9:八年级数学上册《反比例函数》教学反思
新人教版八年级数学上册《反比例函数》教学反思
一、教学设计符合学生的认知规律,以学生的实践活动作为学生思维的切入点,创建了活泼而富有活力的课堂氛围。.重视对学生能力的培养。除培养学生积极思考、主动发言的能力外,还培养了学生的审美能力、空间观念,发展了创造力,丰富了想象力以及动手操作能力,并对“割、补”有所了解。.学生在教师的引导下自主体验、建构知识,实现了知识的再创造。学生通过小组活动,在合作学习中增强与他人的合作意识。
二、本节课的学习方式主要采用探究性学习与接受性学习相结合方式,重点放在反比例函数图象的特征与性质的探究与掌握上,力求通过这一过程使学生感受从“特殊”到“一般”的认知过程,感悟数形结合、分类、归纳、运动与变化的数学思想。
三、本节课知识点的传授主要采用了与正比例函数相对照的方式进行的,这是根据现代建构主义的理论,从思维的最近发展区,通过有关知识的联想激活学生原有的.函数知识,巧妙的引导学生发现正,反比例函数之间的区别与联系,掌握新知。由于本章内容是学生第一次接触函数思想,是学生认知上的一个难点,所以本节课引入时引导学生观察变量之间的对应关系,为下节函数内容做好铺垫。
四、为了调动学生的积极性,整堂课采用了小组竞赛的形式,尤其关心后进生的学习状况,适时的给予鼓励,使每位学生都学到对自己有用的数学。
五、用多媒体教学解决重点难点。
数学学科的特点是逻辑严密、思维抽象。初中学生的认知发展尚未成熟,缺乏逻辑严谨性,导致思考问题不全面,从而对数学中抽象的性质定理较难理会,而多媒体教学技术可以通过其图象及数据的处理功能在教师的操作下,层层深入地引导他们运用形象思维和直觉思维来处理问题,减少学习困难。在本节课的重点难点的解决过程中我都利用了几何画板的动态演示功能,在学生讨论反比例函数性质时,学生通过观察函数图象得出:“当k>0时,y值随自变量x的增大而减小;当k<0时,y值随自变量x的增大而增大”。这个结论是不完善的,必须补上“在每一象限内”这一条件。我处理这个问题时是利用多媒体图象的分解和组合技术通过在函数图象的两个分支上各取一个点,引导学生去比较相应的x、y值的变化情况,让他们自己领会出应将上述结论改为“在每一象限内,当k>0时,y值随自变量x的增大而减小;当k<0时,y值随自变量x的增大而增大”。
二、本节课的学习方式主要采用探究性学习与接受性学习相结合方式,重点放在反比例函数图象的特征与性质的探究与掌握上,力求通过这一过程使学生感受从“特殊”到“一般”的认知过程,感悟数形结合、分类、归纳、运动与变化的数学思想。
篇10:八年级数学上册《实际问题与反比例函数》教学反思
八年级数学上册《实际问题与反比例函数》教学反思
一、本节课的教学内容为反比例函数的图像与性质的新授课第三节课,在“数形结合”的主线下,使学生具有了自我更新知识的能力,具有了可持续发展的能力。
二、首先简单复习了反比例函数与一次函数的表达式、图像、图像象限和增减性,其次利用基础训练的.五个题目求反比例函数表达式和图像及增减性,复习一下代入法和待定系数法;
三、例题精讲,在例题的处理上我注重了学生解题步骤的培养;同时通过题目难度层次的推进;拓宽了学生的思路。在变式训练之后,我又补充了一个综合性题目的例题;达到在课堂中就能掌握比较大小这类题型。但在补充例题的处理上点拨不到位,导致这个问题的解决有点走弯路。
例题在本节既是知识的巩固又是知识的检测,通过这组题目的处理,发现学生对所学的一次函数坐标等方面可以有一点的复习。从整体来看,时间有点紧张,尤其是最后一个与一次函数相结合的综合性题讲解得太少,学生还不太能理解,导致小结很是仓促,而且是由老师代劳了,没有让学生来谈收获,在这点有些包办的趋势
四、不足:虽然在题目的设计和教学设计上我注重了由浅入深的梯度,但有些问题的处理方式不是恰到好处,有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性,本节课的时间分配上还可以再调整;总之,我会在以后的教学中注意细节问题的。
篇11:初中数学变量与函数教案
初中变量与函数教案
初中数学变量与函数教学反思
1、根据学生的认知基础,创设丰富的现实情景,使学生从中感知变量与函数的存在和意义,体会变量之间的相互依存关系和变化规律。
2、遵循从具体到抽象,从特殊到一般,感性到理性的渐进认知规律。先是学生对问题1、2、3的分析,都是从具体的数字入手,慢慢引导抽象出含有字母的等式;接着是分小组对问题4、5的分析,是在分析了前面三个问题的基础上,加大一定的难度和深度,让学生加深体验,直接抽象出含有字母的等式,最后对第96页的两个思考进行分析观察,然后引导得出常量、变量和函数的定义。
3、遵循以教师为主导,学生为主体的教学原则整堂课的问题解决,基本上都是教师引导,学生独立自主或者是合作研究完成的。“学生的数学学习活动,应当是一个生动活泼的、主动和富有个性的过程”。在课堂中,很多地方都是让学生自主完成,然后把自己的成果说出来与大家共享。“动手实践、自主探索与合作交流是学生学习数学的重要方式”。本节课对问题学习,将个人竞争转化为小组间的竞争,有利于培养学生的合作精神和竞争意识。引导学生先观察、分析,后归纳,然后提出注意事项,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析、抽象和概括能力。同时引导学生在探索变量之间的规律,抽象出函数概念的过程中,注意学生的过程经历和体验,让学生领悟到现实生活中存在着多姿多彩的数学问题,并能从中提出问题,分析问题和解决问题,使学生真正成为数学学习的主人。可惜的是学生的积极性不是很高,合作学习的意识也比较单薄,作为老师也没能及时的调动学生的积极性。
4、面向全体学生,人人学有用的数学。学生的个体差异是存在的,在教学中不能一概而论。合作交流能很好的弥补一个教师难以面向有差异的众多学生的教学不足,实现每个学生得到不同的、最好的发展、不过,在小组合作交流的时候,要加强指导,真正的让每个学生都参与其中,真正体验到学习的快乐和获得心智的发展。作业题的必做题和选做题也是考虑到不同层次的学生的要求不同。
5、在问题4上,如果拿几个弹簧秤到现场,让学生亲自动手测量,再根据测量得到的数据进行分析,效果可能会更好。但是也有可能出现时间比较紧的情况。
6、学生对函数概念的理解还不是很透彻,需要进一步加强这方面的练习和指导。
篇12:数学下册变量与函数测试题
数学下册变量与函数测试题
一、填空题
1、某本书的单价是14元,当购买x本这种书时,花费为y元,则用x表示y时,应有,其中变量是,常量是。
2、一汽车油箱中有油60升,若每小时耗油6升,则油箱中剩余油量y(升)与时间t(时)之间的函数关系式为,其中变量是,常量是。
3、当x=2时,函数y=2x+k和y=3kx-2的函数值相等,则k=。
4、已知矩形的周长为6,设它的一条边长为x,那么它的面积y与x之间的函数关系式是,x的取值范围为。
5、一盒装冰淇淋售价19元,内装有6枝小冰淇淋,请写出每枝冰淇淋售价
y(元)与函数x(枝)之间的关系式。
6、在函数关系式中,是常量,是变量。
7、函数的三种表示方法是
8、用描点法画函数图象的一般步骤是
9、一棵2米高树苗,按平均每年长高10厘米计算,树高h(厘米)与年数n之间的`函数关系式是,自变量n的取值范围是。
10、形如___________的函数是正比例函数
11、正比例函数y=kx(k为常数,k<0)的图象依次经过第________象限,函数值y随自变量x的增大而_________.
12、已知y与x成正比例,且x=2时y=-6,则y与x的函数关系式为______.
二、选择题新课标第一网
13、函数中,自变量x的取值范围是
A.x≥2B.x>2C.x<2D.x≠2
14、下列关系中的两个量成正比例的是()
A.从甲地到乙地,所用的时间和速度;B.正方形的面积与边长
C.买同样的作业本所要的钱数和作业本的数量;D.人的体重与身高
15、下列函数中,y是x的正比例函数的是()
A.y=4x+1B.y=2x2C.y=-5xD.y=
16、若函数y=(2m+6)x2+(1-m)x是正比例函数,则m的值是()
A.m=-3B.m=1C.m=3D.m>-3
17、已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1>x2,则y1与y2的大小关系是()
A.y1>y2B.y1
18、下列说法中不成立的是()
A.在y=3x-1中y+1与x成正比例;B.在y=-中y与x成正比例
C.在y=2(x+1)中y与x+1成正比例;D.在y=x+3中y与x成正比例
篇13:初中数学《变量与函数》教案
初中数学《变量与函数》教案
教学目标
①运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义.能分清实例中的常量与变量,了解自变量与函数的意义.
②通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力.
③引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.
教学重点与难点
重点:函数概念的形成过程.
难点:正确理解函数的概念.
教学准备
每个小组一副弹簧秤和挂件,一根绳子.
教学设计
提出问题:
1.汽车以60千米/时的速度匀速行驶.行驶里程为s千米,行驶时间为t小时.先填写下面的表,再试着用含t的式子表示s:
t(小时) 1 2 3 4 5
s(千米)
2.已知每张电影票的售价为10元.如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收人为y元,怎样用含x的式子表示y?
3.要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r?
注:(1)让学生充分发表意见,然后教师进行点评.
(2)挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验.
动手实验
1.在一根弹簧秤上悬挂重物,改变并记录重物的质量,
观察并记录弹簧长度的变化,填入下表:
悬挂重物的质量m(kg)
弹簧长度l(cm)
如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?
2.用10dm长的绳子围成矩形.试改变矩形的长,观察矩形的面积怎样变化,记录不同的矩形的长的值,计算相应的矩形面积的值,探索它们的变化规律(用表格表示).设矩形的长为xdm,面积为Sdm2,怎样用含x的式子表示S?
注:分组进行实验活动,然后各组选派代表汇报.
通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的关系,学会了运用表格形式来表示实验信息.
探究新知
(一)变量与常量的概念
1.在学生动手实验并充分发表自己意见的基础上,师生共同归纳:上面的问题和实验都反映了不同事物的变化过程.其中有些量(时间t、里程s、售出票数x、票房收入y等)的值是按照某种规律变化的.在一个变化过程中,数值发生变化的量,我们称之为变量.也有些量是始终不变的,如上面问题中的速度60(千米/时)、票价10(元)等,我们称之为常量.
2.请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量.
3.举出一些变化的实例,指出其中的.变量和常量.
注:分组活动.先独立思考,然后组内交流并作记录,最后各组选派代表汇报.
培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力.
(二)函数的概念
1.在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?
师生分析得出:上面的每个问题和实验中的两个变量互相联系.当其中一个变量取定一个值时,另一个变量就有惟一确定的值.
2.分组讨论教科书P.7 “观察”中的两个问题.
注:使学生加深对各种表示函数关系的表达方式的印象.
3.一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么,我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值.例如在问题1中,时间t是自变量,里程s是t的函数.t=1时,其函数值s为60,t=2时,其函数值s为120.
同样,在心电图中,时间x是自变量,心脏电流y是x的函数;
在人口统计表中,年份x是自变量,人口数y是x的函数.当x=时,函数值y=12.52.
巩固新知
下列各题中分别有几个变量?你能将其中的某个变量看成是另一变量的函数吗?
1.右图是北京某日温度变化图
2.如图,已知菱形ABCD的对角线AC长为4,BD的长在变化,设BD的长为x,则菱形的面积为y= ×4×x
3.国内平信邮资(外埠,100克内)简表:
信件质量m/克 O 邮资y/元 O.80 1.60 2.40 注:巩固变量与函数的概念,让学生充分体会到许多问题中的变量关系都存在着函数关系,初步了解函数的三种表示方法. 总结归纳 1.常量与变量的概念; 2.函数的定义; 3.函数的三种表示方式. 注:通过总结归纳,完善学生已有的知识结构. 布置作业 1.必做题:教科书P.18习题11.1第1题. 2.选做题:教科书P.18习题11.1第2题. 3.备选题: (1)下图是某电视台向观众描绘的一周之内日平均温度的变化情况: ①图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是函数? ②这周哪天的日平均温度最低?大约是多少度?哪天的日平均温度最高?大约是多少度? ③14、15、16日的日平均温度有什么关系? ④点A表示的是哪天的日平均温度?大约是多少度? ⑤说说这一周的日平均温度是怎样变化的. (2)如右图所示,梯形上底的长是x,下底的长是15,高是8. ①梯形面积y与上底的长x之间的关系式是什么?并指出其中的变量和常量、自变量与函数. ②用表格表示当x从10变到20时(每次增加1),y的相应值. ③当x每增加1时,y如何变化?说说你的理由. ④当x=0时,y等于多少?此时它表示的是什么? (3)研究表明,土豆的产量与氮肥的施用量有如下关系: 施肥量(千克/公顷) 0 34 67 101 135 202 259 336 404 471 土豆产量(吨/公顷) 15.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75 ①上表反映的是哪两个变量之间的关系?指出其中的自变量和函数. ②当氮肥的施用量为101千克/公顷时,土豆的产量是多少?如果不施氮肥呢? ③根据表中的数据,你认为氮肥的施用量为多少比较适宜?说说你的理由. ④简单说一说氮肥的施用量对土豆产量的影响. 设计思想 变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一大飞跃.因此,设计本课时应根据学生的认知基础,创设丰富的现实情境,使学生从中感知变量与函数的存在和意义,体会变量之间的相互依存关系和变化规律.遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则,引导学生探究新知,引导学生在观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析、抽象和概括等能力.同时在引导学生探索变量之间的规律,抽象出函数概念的过程中,要注重学生的过程经历和体验,让学生领悟到、现实生活中存在着多姿多采的数学问题,并能从中提出问题、分析问题和解决问题.还要培养一种团队合作精神,提高探索、研究和应用的能力,使学生真正成为数学学习的主人. 人教版八年级数学上册第十四章《函数》教学反思 今天下午在我任教的一班实施了《函数》这一节内容的教学。一堂40分钟的课下来,原本以为可以轻松搞定的课,结果却问题多多,有很多东西需要自己静下心来思考,现将我实施完本课教学后的思考内容整理如下: 《14.1.2函数》的教学是一堂概念课的教学,我的基本思路还是通过从实际问题出发,得出函数关系式后,引导学生观察、发现、总结,进而归纳得出函数这一概念,讲解时,重点引导学生掌握函数的两个显著特征,即一是存在两个变量,二是当其中一个变量确定为一个数值时,另一个变量会有唯一确定的数值与之对应。通过不断强调“变化与对应”这两个关键点,让学生发现函数的本质属性。引导学生学习了解了函数的概念之后,再通过教材中的例题进行巩固,接着是分了两个层次进行加强训练,最后进行课堂小结。 本课教学的困难之处,我觉得一是如何将抽象性的函数概念清晰明了的讲授给学生,二是教材内容中出现的大量实际问题该如何科学恰当的处理。我的选择是先回顾有关“变量和常量”这两个概念,然后通过之前“14.1.1变量”这一节所提到的前三个问题入手,得出关系式,填写好当其中一个变量确定后所对应的数值(每个问题做了一份表格),完成这三个问题后,让学生来归纳其特征,从而过渡到学习“函数”的概念这一教学环节上来。从实施的情况来看,效果不理想,主要原因是在这三个问题的处理上时间稍显过长,最重要的一点是在引导学生去思考这些问题的特征时,语言不够简练恰当,使得学生在这里的思考陷入困境,课堂氛围陷入僵局。由于自己的引导预设的原因,学生做出了非本人预想的回答,打乱了我的教学思路,致使后面的教学受到了影响。具体情况是这样的,当我提问学生“观察上述问题,每个问题中有几个变量?同一个问题中的变量之间有什么关系?”时,随口说了一句“请同学们观察这三个问题,有何共同点?”在我的引导下,学生说出了两个我想要的答案——一是都存在两个变量,二是当其中一个变量取了一个确定的数值时,另一个变量会有唯一确定的值与之对应,接下来又有学生说出了第三个,那就是这三个问题中都存在常量,这一回答针对课件中我所设计的那三个问题是没有错的,于是我便将其写在了黑板上,但是我们仔细研究初中教材中给出的“函数”定义后会发现,存在常量并非函数关系中必须存在的本质属性,而在课堂中,我并没有跟学生解释清楚这个问题,可能致使部分学生在认识“函数”这一问题上今后还会出现偏差。 事实上,课本教材中的“心电图与人口调查”这两个实际例子,也是函数关系的一种体现,同时也可以作为论述“存在常量,并非函数关系中必须存在的因素”,因为在这两个例子中,一个是讲述心脏产生的生物电的电流与时间这两个变量之间的'关系,另一个是年份与人口数这两个变量之间的关系,中间并未提到常量。(当然,对于这两个例子,是否存在常量,我觉得还值得大家进一步思考与讨论,我只是从函数的表达方式上观察得出的)。学习“函数”概念的关键是在“变化与对应”,且是当自变量的值确定时,有唯一确定的函数值与之相对应,我觉得在这里我讲的还不够好,还不够清楚,前面的例子的引入并没有起到我预想的效果,这值得我认真的思考——该如何有效的利用这些实际问题来进行“函数”的概念教学。 在本次教学中,对于“人口调查”这一问题的讲解上也有问题。我原本想让学生观察找到其与之前的问题的共同特征——“存在两个变量”和“对于其中一个变量去确定的值后,另一个变量也有唯一确定的值与之对应”,但事实证明,学生很难找到其与前面三个问题的共性,当我提出让学生观察并发现后,部分学生的思维被 发散了很多,导致思考漫无边际,而又有一些学生思维陷入了困局,不知从何回答。课后,我也思考了一番,不如讲完前三个实际问题后,便给出“函数”的概念,再给出“心电图”和“人口调查”这两个例子,来印证和说明这也是一种函数关系,进而再讲解,函数的三种表示方法——解析法,图像法和列表法。这样的处理会不会效果更好呢?星期五可以再做新的尝试。 在本次教学中,我讲课本97页的探究内容去掉了,课后许多老师提出这个内容不应删掉,我也觉得如此,这个探究内容确实能够很好的去印证“函数”概念中所蕴含的“变化”与“对应”这两个关键点,是对“函数”概念理解的很好的活动。 在例题的处理上,由于前面的时间安排的不好,使得这道题讲解的也有些匆忙。函数时研究运动变化的重要数学模型,它来源于现实生活又服务于客观实际,所以我明白教材中将实际问题贯穿始终的用意,但是这也无疑给这堂课的教学添加了难度。整体来说学生对于应用题的处理是存在一定困难的,再加上本课又加上了抽象的数学概念,从概念的获得到概念的应用,这个跨度也是有些大的,所以需要教师对于这一过程非常熟悉,非常明确本课的教学目标和重点,采取有效的教学手段,才能引导学生不会在学习中分不清方向,抓不住重点。 课后的分层练习,由于讲到这里课堂剩余的时间已不多了,所以处理的很快,学生完全是被动学习,效果应该也是打了不少折扣。 此外,本课缺少情景引入,教学目标不够清晰,教学语言不精练简介,板书不够有条理,也是本课教学存在的问题。还有在《学习卡》与课件的设计上也存在一些需要改进的地方,在这两天务必要重新设计规划了。 “上好一堂课真不容易,上好每堂课更不容易”,这次教学许多老师提了很好的意见,尤其是黄玲老师,一针见血的指出,尽管我参加过许多大赛并获过不少奖,但是这一两年感觉已经到了一个“瓶颈”,就本课的教学来说,施教者对于概念的特质还抓得不够精准,让听课者感觉有点乱,说明今后还需要加强理论上的学习,需要认真研读教材,扎扎实实的去备课。我觉得说的很对,这也反映出我在平时工作上存在的问题。这些年来,科组的老师们对我的帮助很大,尤其是科组长陈笑联老师和黄玲老师,在这里由衷的表示感谢。对个人而言,虽然参加了东莞市第一期的初中数学教师骨干培训班的培训,但从未将“骨干”跟自己划等号;尽管现在进入了“名师工作室”学习,但从不敢以“名师”自居,我的教学生涯还有很长的一段路要走,在教学教研的路上,我觉得自己还是刚刚入门,还需要不断学习,自己主动的去参加这么多的培训,其实也是想通过培训来鞭策和要求自己,不让自己松懈。没做老师之前,母亲就曾告诫我,做教师这一行是“良心活儿”,要对得起学生,对得起良心。这句话我时刻都记着,我会努力去做的。 变量与函数教案教学设计 教学目标 1、使学生会发现、提出函数的实例,并能分清实例中的常量和变量、自变量与函数。 2、理解函数的定义,能应用方程思想列出实例中的等量关系。 3、培养学生用数学知识解决实际问题的能力。 教学重点:函数的定义与一一对应关系 教学难点:函数的定义与自变量的定义域 教学方法:启发式教学、探究式教学 教学过程 一、由下列问题导入新课 问题l、右图(一)是某日的气温的变化图 看图回答: 1.这天的6时、10时和14时的气温分别是多少?任意给出这天中的某一时刻,你能否说出这一时刻的气温是多少吗? 2.这一天中,最高气温是多少?最低气温是多少? 3.这一天中,什么时段的气温在逐渐升高?什么时段的'气温在逐渐降低? 总结:从图中我们可以看出,随着时间t(时)的变化,相应的气温T(℃)也随之变化。 问题2一辆汽车以30千米/时的速度行驶,行驶的路程为s千米,行驶的时间为t小时,那么,s与t具有什么关系呢? 问题3设圆柱的底面直径与高h相等,求圆柱体积V的底面半径R的关系. 问题4收音机上的刻度盘的波长和频率分别是用(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数: 波长l(m) 300 500 600 1000 1500 频率f(kHz) 1000 600 500 300 200 同学们是否会从表格中找出波长l与频率f的关系呢? 二、自主学习 1.常量和变量 在上述两个问题中有几个量?分别指出两个问题中的各个量? 第1个问题中,有两个变量,一个是时间,另一个是温度,温度随着时间的变化而变化. 第2个问题中有路程s,时间t和速度v,这三个量中s和t可以取不同的数值是变量,而速度30千米/时,是保持不变的量是常量.路程随着时间的变化而变化。 第3个问题中的体积V和R是变量,而π是常量,体积随着底面半径的变化而变化. 第4个问题中的l与频率f是变量.而它们的积等于300000,是常量. 常量:在某一变化过程中始终保持不变的量,称为常量. 变量:在某一变化过程中可以取不同数值的量叫做变量. 2.函数的概念 上面的各个问题中,都出现了两个变量,它们相互依赖,密切相关,例如: 在上述的第1个问题中,一天内任意选择一个时刻,都有惟一的温度与之对应,t是自变量,T因变量(T是t的函数). 在上述的2个问题中,s=30t,给出变量t的一个值,就可以得到变量s惟一值与之对应,t是自变量,s因变量(s是t的函数)。 在上述的第3个问题中,V=2πR2,给出变量R的一个值,就可以得到变量V惟一值与之对应,R是变量,V因变量(V是R的函数). 在上述的第4个问题中,lf=300000,即l=,给出一个f的值,就可以得到变量l惟一值与之对应,f是自变量,l因变量(l是f的函数)。函数的概念:如果在 学习重点:函数的概念 及确定自变量的取值范围。 学习难点:认识函数,领会函数的意义。 【自主复习知识准备】 请你举出生活中含有两个变量的变化过程,说明其中的常量和变量。 【自主探究知识应用】 请看书72――74页内容,完成下列问题: 1、思考书中第72页的问题,归纳出变量之间的关系。 2、完成书上第73页的思考,体会图形中体现的变量和变量之间的关系。 3、归纳出函数的定义,明确函数定义中必须要满足的条件。 归纳:一般的,在一个变化过程中,如果有______变量x和y,并且对于x的_______,y都有_________与其对应,那么我们就说x是__________,y是x的________。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。 补充小结: (1)函数的定义: (2)必须是一个变化过程; (3)两个变量;其中一个变量每取一个值 ,另一个变量有且有唯一值对它对应。 三、巩固与拓展: 例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0。1L/千米。 (1)写出表示y与x的函数关系式。 (2)指出自变量x的取值范围。 (3) 汽车行驶200千米时,油箱中还有多少汽油? 【当堂检测知识升华】 1、判断下列变量之间是不是函数关系: (1)长方形的宽一定时,其长与面积; (2)等腰三角形的底边长与面积; (3)某人的年龄与身高; 2、写出下列函数的解析式。 (1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子。 (2)汽车加油时,加油枪的流量为10L/min。 ①如果加油前,油箱里还有5 L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系; ②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min) 之间的函数关系。 (3)某种活期储蓄的月利率为0。16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式。 (4)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式。 八年级变量与函数(2)数学教案的全部内容由数学网提供,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置,希望大家喜欢! 教学目标 ①运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义。能分清实例中的常量与变量,了解自变量与函数的意义。 ②通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力。 ③引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情。在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心。 教学重点与难点 重点:函数概念的形成过程。 难点:正确理解函数的概念。 教学准备 每个小组一副弹簧秤和挂件,一根绳子。 教学设计 提出问题: 1、汽车以60千米/时的速度匀速行驶。行驶里程为s千米,行驶时间为t小时。先填写下面的表,再试着用含t的式子表示s: t(小时) 1 2 3 4 5 s(千米) 2、已知每张电影票的售价为10元。如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收人为y元,怎样用含x的式子表示y? 3、要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r? 注:(1)让学生充分发表意见,然后教师进行点评。 (2)挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验。 动手实验 1、在一根弹簧秤上悬挂重物,改变并记录重物的质量, 观察并记录弹簧长度的变化,填入下表: 悬挂重物的质量m(kg) 弹簧长度l(cm) 如果弹簧原长10cm,每1kg重物使弹簧伸长0。5cm,怎样用重物质量m(kg)的式子表示受力后的弹簧长度l(cm)? 2、用10dm长的'绳子围成矩形。试改变矩形的长,观察矩形的面积怎样变化,记录不同的矩形的长的值,计算相应的矩形面积的值,探索它们的变化规律(用表格表示)。设矩形的长为xdm,面积为Sdm2,怎样用含x的式子表示S? 注:分组进行实验活动,然后各组选派代表汇报。 通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的关系,学会了运用表格形式来表示实验信息。 探究新知 (一)变量与常量的概念 1、在学生动手实验并充分发表自己意见的基础上,师生共同归纳:上面的问题和实验都反映了不同事物的变化过程。其中有些量(时间t、里程s、售出票数x、票房收入y等)的值是按照某种规律变化的。在一个变化过程中,数值发生变化的量,我们称之为变量。也有些量是始终不变的,如上面问题中的速度60(千米/时)、票价10(元)等,我们称之为常量。 2、请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量。 3、举出一些变化的实例,指出其中的变量和常量。 注:分组活动。先独立思考,然后组内交流并作记录,最后各组选派代表汇报。 培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力。 (二)函数的概念 1、在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系? 师生分析得出:上面的每个问题和实验中的两个变量互相联系。当其中一个变量取定一个值时,另一个变量就有惟一确定的值。 2、分组讨论教科书P。7 “观察”中的两个问题。 注:使学生加深对各种表示函数关系的表达方式的印象。 3、一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么,我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值。例如在问题1中,时间t是自变量,里程s是t的函数。t=1时,其函数值s为60,t=2时,其函数值s为120。 同样,在心电图中,时间x是自变量,心脏电流y是x的函数; 在人口统计表中,年份x是自变量,人口数y是x的函数。当x=时,函数值y=12。52。 巩固新知 下列各题中分别有几个变量?你能将其中的某个变量看成是另一变量的函数吗? 1、右图是北京某日温度变化图 2、如图,已知菱形ABCD的对角线AC长为4,BD的长在变化,设BD的长为x,则菱形的面积为y= ×4×x 3、国内平信邮资(外埠,100克内)简表: 信件质量m/克 O 邮资y/元 O。80 1。60 2。40 注:巩固变量与函数的概念,让学生充分体会到许多问题中的变量关系都存在着函数关系,初步了解函数的三种表示方法。 总结归纳 1、常量与变量的概念; 2、函数的定义; 3、函数的三种表示方式。 注:通过总结归纳,完善学生已有的知识结构。 布置作业 1、必做题:教科书P。18习题11。1第1题。 2、选做题:教科书P。18习题11。1第2题。 3、备选题: (1)下图是某电视台向观众描绘的一周之内日平均温度的变化情况: ①图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是函数? ②这周哪天的日平均温度最低?大约是多少度?哪天的日平均温度最高?大约是多少度? ③14、15、16日的日平均温度有什么关系? ④点A表示的是哪天的日平均温度?大约是多少度? ⑤说说这一周的日平均温度是怎样变化的。 (2)如右图所示,梯形上底的长是x,下底的长是15,高是8。 ①梯形面积y与上底的长x之间的关系式是什么?并指出其中的变量和常量、自变量与函数。 ②用表格表示当x从10变到20时(每次增加1),y的相应值。 ③当x每增加1时,y如何变化?说说你的理由。 ④当x=0时,y等于多少?此时它表示的是什么? (3)研究表明,土豆的产量与氮肥的施用量有如下关系: 施肥量(千克/公顷) 0 34 67 101 135 202 259 336 404 471 土豆产量(吨/公顷) 15。18 21。36 25。72 32。29 34。03 39。45 43。15 43。46 40。83 30。75 ①上表反映的是哪两个变量之间的关系?指出其中的自变量和函数。 ②当氮肥的施用量为101千克/公顷时,土豆的产量是多少?如果不施氮肥呢? ③根据表中的数据,你认为氮肥的施用量为多少比较适宜?说说你的理由。 ④简单说一说氮肥的施用量对土豆产量的影响。 设计思想 变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一大飞跃。因此,设计本课时应根据学生的认知基础,创设丰富的现实情境,使学生从中感知变量与函数的存在和意义,体会变量之间的相互依存关系和变化规律。遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则,引导学生探究新知,引导学生在观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析、抽象和概括等能力。同时在引导学生探索变量之间的规律,抽象出函数概念的过程中,要注重学生的过程经历和体验,让学生领悟到、现实生活中存在着多姿多采的数学问题,并能从中提出问题、分析问题和解决问题。还要培养一种团队合作精神,提高探索、研究和应用的能力,使学生真正成为数学学习的主人。 八年级上册数学函数知识点 一、变量与函数 [变量和常量] 在一个变化过程中,数值发生变化的量,我们称之为变量,而数值始终保持不变的量,我们称之为常量。 [函数] 一般地,在一个变化过程中,如果有两个变量 与 ,并且对于 的每一个确定的值, 都有唯一确定的值与其对应,那么我们就说 是自变量, 是 的函数。如果当 时 ,那么 叫做当自变量的值为 时的函数值。 [自变量取值范围的确定方法] 1、自变量的取值范围必须使解析式有意义。 当解析式为整式时,自变量的取值范围是全体实数;当解析式为分数形式时,自变量的取值范围是使分母不为0的所有实数;当解析式中含有二次根式时,自变量的取值范围是使被开方数大于等于0的所有实数。 2、自变量的取值范围必须使实际问题有意义。 [函数的图像] 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. [描点法画函数图形的一般步骤] 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点); 第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 [函数的表示方法] 列表法:一目了然,使用起来方便,但列出的对应值是有限的`,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 [正比例函数] 一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function),其中k叫做比例系数. [正比例函数图象和性质] 一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点和(1,k)的直线.我们称它为直线y=kx.当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小. (1) 解析式:y=kx(k是常数,k≠0) (2) 必过点:(0,0)、(1,k) (3) 走向:k>0时,图像经过一、三象限;k<0时,图像经过二、四象限 (4) 增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小 (5) 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴 [正比例函数解析式的确定]――待定系数法 1. 设出含有待定系数的函数解析式y=kx(k≠0) 2. 把已知条件(一个点的坐标)代入解析式,得到关于k的一元一次方程 3. 解方程,求出系数k 4. 将k的值代回解析式 二、一次函数 [一次函数] 一般地,形如y=kx+b(k、b是常数,k 0)函数,叫做一次函数. 当b=0时,y=kx+b即y=kx,所以正比例函数是一种特殊的一次函数. [一次函数的图象及性质] 一次函数y=kx+b的图象是经过(0,b)和(- ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移) (1)解析式:y=kx+b(k、b是常数,k 0) (2)必过点:(0,b)和(- ,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限 直线经过第一、二、三象限 直线经过第一、三、四象限 直线经过第一、二、四象限 直线经过第二、三、四象限 (4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小. (5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴. (6)图像的平移: 当b>0时,将直线y=kx的图象向上平移b个单位; 当b<0时,将直线y=kx的图象向下平移b个单位. [直线y=k1x+b1与y=k2x+b2的位置关系] (1)两直线平行:k1=k2且b1 b2 (2)两直线相交:k1 k2 (3)两直线重合:k1=k2且b1=b2 [确定一次函数解析式的方法] (1)根据已知条件写出含有待定系数的函数解析式; (2)将x、y的几对值或图象上的几个点的坐标代入上述函数解析式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值; (4)将求出的待定系数代回所求的函数解析式中得出结果. [一次函数建模] 函数建模的关键是将实际问题数学化,从而解决最佳方案、最佳策略等问题. 建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知识解决实际问题. 正比例函数的图象和一次函数的图象在赋予实际意义时,其图象大多为线段或射线. 这是因为在实际问题中,自变量的取值范围是有一定的限制条件的,即自变量必须使实际问题有意义. 从图象中获取的信息一般是:(1)从函数图象的形状判定函数的类型; (2)从横、纵轴的实际意义理解图象上点的坐标的实际意义. 解决含有多个变量的问题时,可以分析这些变量的关系,选取其中某个变量作为自变量,再根据问题的条件寻求可以反映实际问题的函数. 三、用函数观点看方程(组)与不等式 [一元一次方程与一次函数的关系] 任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值. [一次函数与一元一次不等式的关系] 任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. [一次函数与二元一次方程组] (1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y= 的图象相同. (2)二元一次方程组 的解可以看作是两个一次函数y= 和y= 的图象交点. 三个重要的数学思想 1.方程的思想。数学是研究事物的空间形式和数量关系的,初中数学最重要的就是等量关系,其次是不等量关系。最常见的等量关系就是方程。 2.数形结合的思想。任何一道题,只要与形沾边,就应该根据题意中的草图分析一番。这样做,不但直观,而且全面,整体性强。 3.对应的思想。 初中生数学成绩的提高,需要靠自己勤加练习和脚踏实地的去接受数学。 合数的概念 合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质dao数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。 教学目标 1.认识变量、常量. 2.学会用含一个变量的代数式表示另一个变量. 教学重点 1.认识变量、常量. 2.用式子表示变量间关系. 教学难点:用含有一个变量的式子表示另一个变量. 教学过程 Ⅰ.提出问题,创设情境 情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.•行驶时间为t小时. 1.请同学们根据题意填写下表: 2.在以上这个过程中,变化的量是 ________.不变化的量是__________. 3.试用含t的式子表示s. Ⅱ.导入新课 首先让学生思考上面的几个问题,可以互相讨论一下,然后回答. 从题意中可以知道汽车是匀速行驶,那么它1小时行驶60千米,2小时行驶2×60千米,即120千米,3小时行驶3×60千米,即180千米,4小时行驶4×60•千米,即240千米,5小时行驶5×60千米,即300千米„„因此行驶里程s千米与时间t小时之间有关系:s=60t.其中里程s与时间t是变化的量,速度60•千米/小时是不变的量. 这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量的是按照某种规律变化的,如上例中的时间t、•里程s,有些量的数值是始终不变的,如上例中的速度60千米/小时. [活动] 1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.•怎样用含x的式子表示y? 2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,•每1kg•重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度? 引导学生通过合理、正确的思维方法探索出变化规律. 结论: 1.早场电影票房收入:150×10=1500(元);日场电影票房收入:205×10=2050(元) 晚场电影票房收入:310×10=3100(元); 关系式:y=10x 2.挂1kg重物时弹簧长度: 1×0.5+10=10.5(cm) 挂2kg重物时弹簧长度:2×0.5+10=11(cm);挂3kg重物时弹簧长度:3×0.5+10=11.5(cm) 关系式:L=0.5m+10 通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant).如上述两个过程中,售出票数x、票房收入y;重物质量m,•弹簧长度L都是变量.而票价10元,弹簧原长10cm„„都是常量. 【八年级数学上册变量与函数教学反思】相关文章:篇14:八年级数学上册第十四章《函数》教学反思
篇15:变量与函数教案教学设计
篇16:变量与函数2教学设计
篇17:变量与函数2教学设计
篇18: 八年级上册数学函数知识点
篇19:八年级上册数学函数教案






文档为doc格式