高二物理教案精选
“guangdongszhd”通过精心收集,向本站投稿了19篇高二物理教案精选,以下是小编为大家准备的高二物理教案精选,供大家参考借鉴,希望可以帮助到有需要的朋友。
篇1:高二物理教案
第1课时 库仑定律 电场强度
基础知识回顾
1.电荷、电荷守恒
⑴自然界中只存在两种电荷:正电荷、负电荷.使物体带电的方法有摩擦起电、接触起电、感应起电. ⑵静电感应:当一个带电体靠近导体时,由于电荷间的相互吸引或排斥,使导体靠近带电体的一端带异号电荷,远离带电体的一端带同号电荷.
⑶电荷守恒:电荷即不会创生,也不会消失,它只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分;在转移过程中,电荷总量保持不变.(一个与外界没有电荷交换的系统,电荷的代数和保持不变)
⑷元电荷:指一个电子或质子所带的电荷量,用e表示.e=1.6×10-19
2.库仑定律
⑴真空中两个点电荷之间相互作用的电场力,跟它们电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上.即:F?kq1q2 其中k为静电力常量, k=9.0×10 9 N?m2/c2 2r
⑵成立条件
①真空中(空气中也近似成立),②点电荷,即带电体的形状和大小对相互作用力的影响可以忽略不计.(对带电均匀的球, r为球心间的距离).
3.电场强度
⑴电场:带电体的周围存在着的一种特殊物质,它的基本性质是对放入其中的电荷有力的作用,这种力叫电场力.电荷间的相互作用就是通过电场发生作用的.电场还具有能的性质.
⑵电场强度E:反映电场强弱和方向的物理量,是矢量.
①定义:放入电场中某点的试探电荷所受的电场力F跟它的电荷量q的比值,叫该点的电场强度.即:E?F
q单位:
②场强的方向:规定正电荷在电场中某点的受力方向为该点的场强方向. (说明:电场中某点的场强与放入场中的试探电荷无关,而是由该点的位置和场源电何来决定.)
⑶点电荷的电场强度:E=kQ,其中Q为场源电荷,E为场中距Q为r的某点处的场强大小.对于求r2
均匀带电的球体或球壳外某点的场强时,r为该点到球心的距离.
⑷电场强度的叠加:当存在多个场源电荷时,电场中某点的场强为各个点电荷单独在该点产生的电场强度的矢量和.
⑸电场线:为形象描述电场而引入的假想曲线.
①电场线从正电荷或无限远出发,终止于无限远或负电荷.
②电场线不相交,也不相切,更不能认为电场就是电荷在电场中的运动轨迹.
③同一幅图中,场强大的地方电场线较密,场强小的地方电场线较疏.
⑹匀强电场:电场中各点场强大小处处相等,方向相同,匀强电场的电场线是一些平行的等间距的平行线.
篇2:高二物理教案
(一)知识与技能
掌握电势差与电场强度的关系
(一) 过程与方法
通过对电场力做功的两种不同方式的比较推导得出电势差与电场强度的关系
(二) 情感态度与价值观
1、习感知科学的价值和应用
2、培养对科学的兴趣、坚定学习思考探索的的信念
重点:匀强电场中电势差与电场强度的关系
难点:电势差与电场强度的关系在实际问题中应用。
教学活动
教学过程:
复习提问
1、电场的两大性质:
① 力的性质,由电场强度描述,可用电场线形象表示;
②能的性质:由电势、电势差描述,可用等势面形象表示。
2、等势面有哪些特点? ①沿等势面移动电荷电场力不做功;②等势面与电场线垂直,且电场线从高电势指向低电势;③任两个等势面不相交。
既然场强、电势、电势差都描述电场的性质,它们之间一定存在关系。
新课教学
一、电场强度与电势的关系
(1)电场强度大的地方电势是否一定高?反之?
(2)电场强度为零的点电势一定为零吗?反之?
E值是客观存在的,而电势的值与零电势点选取有关,所以上述问题不可能有肯定答复。
E大处 不一定高, 高处E也不一定大。E为零处 不一定为零, 为零处E不一定为零.
结论:场强与电势无直接关系.
篇3:高二物理教案
三维教学目标
1、知识与技能
(1)知道波源的频率与观察者接收到的频率的区别;
(2)知道什么是多普勒效应;
(3)能运用多普勒效应解释一些物理现象。
2、过程与方法
3、情感、态度与价值观
教学重点:知道波源的频率与观察者接收到的频率的区别;知道多普勒效应是在波源和观察者之间有相对运动时产生的。
教学难点:波源的频率与观察者接收到的频率的区别。
教学方法:读、讲、练与分析相结合
(一)引入新课
让学生叙述火车向你驶来时,汽笛本身的音调如何变?人听到的汽笛音调如何变?火车离你而去时,汽笛本身的音调如何变?人听到的汽笛音调如何变?同是汽笛发声为什么会产生两种不同的现象呢?
多普勒效应。
(二)新课教学
1、波源的频率与观察者接收到的频率
问题:什么叫频率?声音的音调由什么因素决定?
提示:波源的频率--单位时间内波源发出的完全波的个数。观察者接收到的频率--单位时间内观察者接收到的完全波的个数。
如果波源和观察者相对于介质静止,则观察者接收到的频率与波源的频率相等,如果波源或观察者相对于介质运动时,则观察者接收到的频率与波源的频率不相等,这一现象就叫多普勒效应。
2、多普勒效应的成因
例1:波速为V=100m/s,波源的频率f=100Hz.可算得:波的周期T=0.01s,波长λ=1m。
(1)波源相对于介质静止,观察者相对于介质静止在时间t=1s里有100个波传到观察者所在的A处,观察者接收到的频率与波源的频率相等,音调不变。
(2)观察者相对于介质静止,波源以速度V源=10m/s相对于介质运动,第一、波源向观察者运动则对观察者来说感觉到的波速为110m,他在1秒钟内接收到的完全波数为110个,所以观察者感受到的频率f'=110Hz比波源的频率f=100Hz要高,因而音调变高。
注意:波速实际并没有改变,但在相同的距离中却多了10个完整波,是由于波在介质中被均匀挤压,使之波长变短的缘故。第二、波源远离观察者,由同学自行分析。
(3)波源相对于介质静止,观察者以速度V人=10m/s相对于介质运动。第一、观察者向波源运动;第二、观察者远离波源,由同学自行分析。
(4)波源与观察者同时相对于介质运动又如何呢?多普勒效应更加明显
3、多普勒效应的应用:学生阅读课文的最后一段,并加以总结。
巩固练习
(1)关于多普勒效应,下列说法中正确的是
A.多普勒效应是由波的干涉引起的
B.多普勒效应说明波源的频率发生了改变
C.多普勒效应是由于波源和观察者之间有相对运动而产生的
D.只有声波才能产生多普勒效应
篇4:高二物理教案精选
【教学目标】
1、知识与技能目标
初步了解普朗克“量子假说”的背景,体会经典力学的局限性。知道普朗克“量子假说”的主要内容。
初步了解爱因斯坦“光量子说”的含义,了解光的微粒说与波动说之争,知道光具有波粒二象性。
2、过程与方法目标
认识到发展问题和提出问题的意义,认识到在科学理论建立过程中猜想和假设的重要性,以及科学争论和自由争鸣对科学发展所起的作用,培养学生的质疑能力和相像能力。
能尝试运用物理原理和研究方法解决一些相关的实际问题,培养解决实际问题的能力。
3、情感态度与价值观目标
领略到自然界的奇妙与和谐,发展学生对科学的发奇心与求知欲。体会辩论和质疑在科学研究中所起的积极作用。
养成敢于发表自己观点,既坚持原则又尊重他人的良好习惯。培养有根据的怀疑精神和批判意识,敢于坚持真理、勇于创新和实事求是的科学态度和科学精神以及判断大众传媒等有关信息是否科学的意识。
【重点难点】
教学重点:初步建立量子化的概念。
教学难点:物质的波粒二象性概念。
【教学方法】
通过自主学习和交流讨论的方式、上网查阅有关资料、教师讲授法结合。
【教学建议】
1.本节从世纪之交经典物理学无法解释“黑体辐射实验”的“紫外灾难”,引出普朗克的“量子假说”产生的历史背景,体会物理问题的研究往往是从模型的建立和假说入手。教学中可让学生通过自主学习和交流讨论的方式,完成对学习过程的体验。
2.认识科学问题的研究总是经历:提出问题→猜想假设→实践论证→修改理论……最终提示自然规律的过程。
3.关于光的波动性、粒子性及量子理论初步等内容的教学,应强调科学真理发现的道路并不平坦,需要一个漫长的过程;学习中应认真体会辩论和质疑在科学研究中所起的积极作用,通过典型的实例让学生充分认识量子理论的发展如何推动现代科学技术的迅猛发展,理解科学对技术发展的促进作用。
4.教学中要充分利用物理学史知识,围绕核心问题、展开师生之间的交流互动。教师不要局限于教材,可以根据学生的实际情况,做到用教材而不是教教材。充分利用多煤体教学手段,提高学生学习的兴趣和学习效率。
5.由于本节知识带有科普性质,所以无论是补充的内容还是原来课本的内容,都不宜也不可能讲得很深,尽可能把抽象问题形象化,能达到学生有一定的继续学习的兴趣即可。
【教学过程】
1. 让学生阅读全文,允许学生互相讨论交流,并提出问题。(约20分钟)2. 对学生提出的问题做出正面的回答,尽可能把抽象问题形象化。(至少20分钟)
3. 预计且建议可补充的内容有:
a:关于黑体的相关知识;
b:光的本性发展简史;
c:光电效应;
d:能级的相关知识;
e:课程资源:
1.普朗克及其对物理学的贡献
2.光电效应和爱因斯坦光量子理论
(1)光电效应的规律
(2)经典物理理论对光电效应解释的困难
(3)爱因斯坦光子说及其对光电效应的圆满解释
3.玻尔对原子结构学说的贡献
4.光的本性——光的波动说和微粒学之争
5.德布罗意的物质波观点
本教案设计过程简单,只是给出一个授课过程的框架性建议,以及一些补充建议,实在不是本人想偷工减料,只是因为教材处理灵活,至于要补充什么,第一课时讲到哪里,相信每个教师都有自己的特点及学情,不应受到束缚。从这点意义上讲,这样的教案设计或许符合课改的精神吧?
篇5:高二物理教案
教学目标
(一)知识与技能
1.知道两种电荷及其相互作用.知道点电荷量的概念.
2.了解静电现象及其产生原因;知道原子结构,掌握电荷守恒定律
3.知道什么是元电荷.
4.掌握库仑定律,要求知道知道点电荷模型,知道静电力常量,会用库仑定律的公式进行有关的计算.
(二)过程与方法
2、通过对原子核式结构的学习使学生明确摩擦起电和感应起电不是创造了电荷,而是使物体中的电荷分开.但对一个与外界没有电荷交换的系统,电荷的代数和不变。
3、类比质点理解点电荷,通过实验探究库仑定律并能灵活运用
(三)情感态度与价值观
通过对本节的学习培养学生从微观的角度认识物体带电的本质,认识理想化是研究自然科学常用的方法,培养科学素养,认识类比的方法在现实生活中有广泛的应用
重点:电荷守恒定律,库仑定律和库仑力
难点:利用电荷守恒定律分析解决相关问题摩擦起电和感应起电的相关问题,库仑定律的理解与应用。
教具:丝绸,玻璃棒,毛皮,硬橡胶棒,绝缘金属球,静电感应导体,通草球,多媒体课件
教学过程:
第1节电荷库仑定律(第1课时)
(一)引入新课:
多媒体展示:闪电撕裂天空,雷霆震撼着大地。
师:在这惊心动魄的自然现象背后,蕴藏着许多物理原理,吸引了不少科学家进行探究。在科学史上,从最早发现电现象,到认识闪电本质,经历了漫长的岁月,一些人还为此付出过惨痛的代价。下面请同学们认真阅读果本第2页“接引雷电下九天”这一节,了解我们人类对闪电的研究历史,并完成下述填空:
电闪雷鸣是自然界常见的现象,蒙昧时期的人们认为那是“天神之火”,是天神对罪恶的惩罚,直到1752年,伟大的科学家___________冒着生命危险在美国费城进行了著名的风筝实验,把天电引了下来,发现天电和摩擦产生的电是一样的,才使人类摆脱了对雷电现象的迷信。
师强调:以美国科学家的富兰克林为代表的一些科学家冒着生命危险去捕捉闪电,证实了闪电与实验室中的电是相同的。
雷电是怎样形成的?(大气中冷暖气流上下急剧翻滚,相互摩擦,云层就会积聚电荷,当电荷积累到一定程度,瞬间发生大规模的放电,就产生了雷电)物体带电是怎么回事?电荷有哪些特性?电荷间的相互作用遵从什么规律?人类应该怎样利用这些规律?这些问题正是本章要探究并做出解答的。
师:本节课我们重点研究了解几种静电现象及其产生原因,电荷守恒定律
(二)新课教学
复习初中知识:
师:根据初中自然的学习,用摩擦的方法可使物体带电,请举例说明。
生:用摩擦的方法。如:用丝绸摩擦过的玻璃棒,玻璃棒带正电;用毛皮摩擦过的硬橡胶棒,橡胶棒带负电。
演示实验1:先用玻璃棒、橡胶棒靠近碎纸屑,看有什么现象?然后用绸子摩擦玻璃棒或用毛皮摩擦橡胶棒,再靠近碎纸屑看有什么现象?让学生分析两次实验现象的异同;并分析原因。
教师总结:摩擦过的物体性质有了变化,带电了或者说带了电荷。带电后,能吸引轻小物体,而且带电越多,吸引力就越大,能够吸引轻小物体,我们说此时物体带了电。而用摩擦的方法使物体带电就叫做摩擦起电。
人类从很早就认识了摩擦起电的现象,例如公元1世纪,我国学者王充在《论衡》一书中就写下了“顿牟掇芥”一语,指的是用玳琩的壳吸引轻小物体。
后来人们认识到摩擦后的物体所带的电荷有两种:用丝绸摩擦过的玻璃棒的所带的电荷是一种,用毛皮摩擦过的硬橡胶棒所带的电荷是另一种。同种电荷相互排斥,异种电荷相互吸引。
一、电荷:
1①把用丝绸摩擦过的玻璃棒所带的电荷称为正电荷.②把用毛皮摩擦过的硬橡胶棒所带的电荷称为负电荷.
2
3、电荷量:C
“做一做”验电器与静电计
为了判断物体是否带电以及所带电荷的种类和多少,从18世纪起,人们经常使用一种叫验电器的简单装置:玻璃瓶内有两片金属箔,用金属丝挂在一条导体棒的下端,棒的上端通过瓶塞从瓶口伸出(图甲)。如果把金属箔换成指针,并用金属做外壳,这样的验电器又叫静电计(图乙)
问:是否只有当带电体与导体棒的上端直接接触时,金属箔片才开始张开?解释看到的现象?
1、摩擦起电
摩擦起电的原因:不同物质的原子核束缚电子的能力不同.特别是离核较远的电子受到的束缚较小。当两个物体互相摩擦时,一些束缚得不紧的电子往往从一个物体转移到另一个物体。实质:电子的转移.结果:两个相互摩擦的物体带上了等量异种电荷.得到电子:带负电;失去电子:带正电问:摩擦起电有没有创造了电荷?
生:没有,摩擦起电是带电粒子(如电子)从一个物体转移到另一个物体。师:很多物质都会由于摩擦而带电,是否还存在其它的使物体起电的方式?在学习新的起电方式之前,我们先来学习金属导体模型。
金属导体模型也是一个物理模型P3(动画演示)
自由电子:脱离原子核的束缚而在金属中自由活动。
带正电的离子:失去电子的原子,都在自己的平衡位置上振动而不移动。
2、感应起电
【演示】取一对用绝缘柱支持的导体A和B,使它们
彼此接触。起初它们不带电,帖在下部的金属箔是闭合的。
①把带正电荷的球C移近彼此接触的异体A,B(参见
课本图1.1-1).金属箔有什么变化?
实验现象:可以看到A,B上的'金属箔都张开了,表
示A,B都带上了电荷.提出静电感应概念:
(1)静电感应:把电荷移近不带电的导体,可以使导体带电的现象。
规律:近端感应异种电荷,远端感应同种电荷(2)利用静电感应使物体带电,叫做感应起电.
(3)提出问题:静电感应的原因?
带领学生分析物质的微观分子结构,分析起电的本质原因:把带电的球C移近金属导体A和B时,由于同种电荷相互排斥,异种电荷相互吸引,使导体靠近带电体的一端带异号电荷,远离带电体的一端带同号电荷。如上面的这个演示实验中,导体A和B带上了等量的异种电荷.
【演示】
②如果先把C移走,金属箔又有什么变化?实验现象:A和B上的金属箔就会闭合.
③如果先把A和B分开,然后移开C,金属箔又有什么变化?
实验现象:可以看到金属箔仍张开,表明A和B仍带有电荷;
④如果再让A和B接触,金属箔又有什么变化?
实验现象:金属箔就会闭合,表明他们就不再带电.这说明A和B分开后所带的是异种等量的电荷,重新接触后等量异种电荷发生中和.
问:感应起电有没有创造了电荷?
生:没有。感应起电而是使物体中的正负电荷分开,是电荷从物体的一部分转移到另一部分。感应起电也不是创造了电荷。
师:无论是哪种起电方式,其本质都是将正、负电荷分开,使电荷发生转移,并不是创造电荷.
得出电荷守恒定律.三、电荷守恒定律:电荷既不能创造,也不能消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分.
师:电荷守恒定律是物理学中重要的基本定律之一。四、元电荷
师:迄今为止,科学家实验发现的最小电荷量就是电子所带的电荷量。质子、正电子所带的电荷量与它相同,但符号相反。人们把这个最小的电荷量叫做元电荷。元电荷:电子所带的电荷量,用e表示。e=1.60×10-19C注意:迄今为止,发现所有带电体的电荷量或者等于e,或者等于e的整数倍。就是说,电荷量是不能连续变化的物理量。
(三)小结
篇6:高二物理教案
知识与技能:
1.理解点电荷的概念。
2.通过对演示实验的观察和思去向不明,概括出两个点电荷之间的作用规律。掌握库仑定律。
过程与方法:
1.观察演示实验,培养学生观察、总结的能力。
2.通过点电荷模型的建立,了解理想模型方法,把复杂问题简单化的途径,知道从现实生活的情景中如何提取有效信息,达到忽略
次要矛盾,抓住主要矛盾,直指问题核心的目标。
情景引入
为了测定水分子是极性分子还是非极性分子,可做如下实验:在酸性滴定管中注入适当蒸馏水,打开活塞,让水慢慢如线状流下,把用丝绸摩擦过的玻璃棒接近水流,发现水流向靠近玻璃棒的方向偏转,这证明水分子是极性分子,聪明的同学,根据上述素材,你想知道是如何证明水分子是极性分子吗?
(同性相斥,异性相吸),带正电的一端远离玻璃棒。而水分子两极的电荷量相等,这就使带正电的玻璃棒对水分子显负电的一端的引力大于对水分子显正电的一端的斥力,因此水分子所受的合力指向玻璃棒,故水流向靠近玻璃棒方向偏转.
问题探究
知识点一、点电荷
走进生活
验电器的上部是球形的金属导体,中央金属箔是指针式的形状,电荷分布与带电体的形状有关,与万有引力相似,带电体间的相互作用力与带电体的形状和大小有关。为了研究的方便,在应用万有引力定律时,我们引入了质点的概念,利用万有引力定律就能求出两质点间的万有引力大小,如果带电体也能等效成电荷全部集中在一个几何点上,研究带电体间的相互作用力也会变得相对简单。回顾学过的质点概念,你能建立起点电荷的概念吗?
自主探究
1.点电荷
(1)点电荷是实际带电体的一种理想化的模型。
(2)一个带电体能否看作点电荷主要看其形状和大小对所研究的问题影响大不大,如果属于无关或次要因素时,或者说,它本身的大小比起它到其他带电体的距离小得多,即可把带电体看作点电荷。
(3)对于带电体能否被看作点电荷,一定要具体问题具体分析,即使对同一带电体,在有些情况下可以看作质点,而在有些情况下又不能被看作质点.
2.理想化的模型到简化,这是一种重要的科学研究方法。
各个击破
1.对点电荷概念的解读:
(1)点电荷是一个忽略大小和形状的几何点,电荷的全部质量全部集中在这个几何点上。
(2)事实上,任何带电体都有大小和形状,真正的点电荷是不存在的,它是一个理想化模型。
(3)如果带电体本身的几何线度比起它们之间的距离小得多,带电体的形状、大小和电荷分布对带电体之间的相互作用的影响可以忽略不计,在此情况下,我们可以把带电体抽象成点电荷,可以理解为带电的质点。
2.对点电荷的应用:
有一种特殊情况,均匀带电的球体或均匀带电的球面,带电体本身的几何线度可能并不比它们之间的距离小很多,但带电体电荷分布具有对称性,对外所表现的电特性跟一个等效于球心的点电荷的电特性相同,所以均匀带电的球体或均匀带电的球面都可以等效为一个球心处的点电荷,就是通常所说的带电小球。
互动空间
讨论与交流:
(1)几个同学在一起讨论带电体的大小和能否看成点电荷有什么关系?
答案:不能简单的认为很小的带电体就可以看作点电荷,很大的带电体就不能看作点电荷。
(2)甲同学认为一个带电体有时可看成点电荷,有时不能看成点电荷,你认为这种说法对吗?为什么?
答案:该同学说法正确。能否看成点电荷,关键是带电体的形状、大小和电荷分布对带电体之间的相互作用的影响是否可以忽略不计。
(3)乙同学认为点电荷是一个理想化的模型,所以点电荷没有大小,没有质量,你认为这种说法对吗?
答案:点电荷就是对实际带电体的近似,是一个理想化模型,严格意义上讲点电荷实际是不存在的。所谓“理想化”,就是忽略了它的大小、形状、电荷分布情况,却在一个几何点上具有物体的全部质量,全部电荷量;所谓“模型”,是因为它可以代表原来的真实带电体,在空间占一定大小。
例1.某同学认为带电体能否看成点电荷跟所研究问题有着直接关系,请你根据点电荷的定义判断下列说法正确的是
A.因为电子非常小,所以电子才可以看成是点电荷
B.研究验电器金属箔张开的角度时,可以把两金属箔看成是点电荷
C.在研究相距较远的两个带电小球的静电力时可以把带电小球看成是点电荷
D.任何情况下不规则的带电体都不能看成是点电荷
阅读与理解:根据点电荷定义可知,对于一个带电体,如果其大小和形状跟所研究问题无关,就可以看作点电荷。
属箔不可看成点电荷,B错;相距较远的两个带电小球,可看作球心处的点电荷,C对;能否看成点电荷,与带电体形状规则与否无关,D错.
答案:C
过程与方法:点电荷概念的引入是为了抓住影响电荷间相互作用力的主要因素,忽略次要因素。点电荷是一个抽象的物理模型,能否看作点电荷关键是要看物体的大小、形状在所研究的问题中可不可以忽略不计。能否用一个包含带电体的所有质量、所有带电量的几何点来代替整个带电体,抓住主要因素,并且使问题得以简化,这才是把带电体看作点电荷的意义。
针对训练1.下列说法正确的是()
A.带电量小的带电体都可看作点电荷
B.带电球体都能看作点电荷
C.带电体的电荷分布不均匀,也可以看作点电荷
D.如果带电体的形状和大小在所研究的问题中属于无关或次要因素,就可以把带电体看作点电荷
解析:带电体能否看成点电荷是由问题的性质决定的,与物体的大小、所带电量无关,A错。带电球体相距较近时,电荷的分布会受影响而不再是均匀的,此时不能看作点电荷,B错。带电体大小和形状可以忽略,即使电荷分布不均匀,也能看作点电荷,C、D正确。
答案:CD
即时反馈参考答案
1.不能简单的认为很小的带电体就可以看作点电荷,很大的带电体就不能看作点电荷;
2.同一个带电体在有些情况下可以看成点电荷,而在另一些情况下又不能看成点电荷。关键是带电体的形状、大小和电荷分布对带电体之间的相互作用的影响可以忽略不计.
3.“理想模型”的建立,具有十分重要意义。引入“理想模型”,可以使问题的处理简化而又不会发生大的偏差,在现实世界中,有许多实际的事物与这种“理想模型”十分接近,即可以将研究“理想模型”的结果直接地应用于实际事物。
高二物理教案法
【教学目标】
知识与技能
1.知道曲线运动的方向,理解曲线运动的性质
2.知道曲线运动的条件,会确定轨迹弯曲方向与受力方向的关系过程与方法
1.体验曲线运动与直线运动的区别
2.体验曲线运动是变速运动及它的速度方向的变化
情感态度与价值观
能领会曲线运动的奇妙与和谐,培养对科学的好奇心和求知欲
【教学重点】
1.什么是曲线运动
2.物体做曲线运动方向的判定3.物体做曲线运动的条件
【教学难点】
物体做曲线运动的条件
【教学课时】
1课时
【探究学习】
1、曲线运动:__________________________________________________________2、曲线运动速度的方向:
质点在某一点的速度,沿曲线在这一点的方向。3、曲线运动的条件:
(1)时,物体做曲线运动。(2)运动速度方向与加速度的方向共线时,运动轨迹是___________
(3)运动速度方向与加速度的方向不共线,且合力为定值,运动为_________运动。(4)运动速度方向与加速度的方向不共线,且合力不为定值,运动为___________运动。4、曲线运动的性质:
(1)曲线运动中运动的方向时刻_______(变、不变),质点在某一时刻(某一点)的速度方向是沿__________________________________________,并指向运动轨迹凹下的一侧。
(2)曲线运动一定是________运动,一定具有_________。
【课堂实录】
【引入新课】
生活中有很多运动情况,我们学习过各种直线运动,包括匀速直线运动,匀变速直线运动等,我们知道这几种运动的共同特点是物体运动方向不变。下面我们就来欣赏几组图片中的物体有什么特点(展示图片)
再看两个演示
第一,自由释放一只较小的粉笔头
第二,平行抛出一只相同大小的粉笔头
两只粉笔头的运动情况有什么不同?学生交流讨论。
结论:前者是直线运动,后者是曲线运动
在实际生活普遍发生的是曲线运动,那么什么是曲线运动?本节课我们就来学习这个问题。新课讲解
一、曲线运动
1.定义:运动的轨迹是曲线的运动叫做曲线运动。
2.举出曲线运动在生活中的实例。
问题:曲线运动中速度的方向是时刻改变的,怎样确定做曲线运动的物体在任意时刻速度的方向呢?
引出下一问题。
二、曲线运动速度的方向
看图片:撑开带有水滴的雨伞绕柄旋转。
问题:水滴沿什么方向飞出?学生思考
结论:雨滴沿飞出时在那点的切线方向飞出。
如果球直线上的某处A点的瞬时速度,可在离A点不远处取一B点,求AB点的平均速度来近似表示A点的瞬时速度,时间取得越短,这种近似越精确,如时间趋近于零,那么AB见的平均速度即为A点的瞬时速度。
结论:质点在某一点的速度方向,沿曲线在这一点的切线方向。三、物体做曲线运动的条件
实验1:在光滑的水平面上具有某一初速度的小球,在不受外力作用时将如何运动?学生实验
结论:做匀速直线运动。
实验2:在光滑的水平面上具有某一初速度的小球,在运动方向的正前方或正后方放一条形
磁铁,小球将如何运动?学生实验
结论:小球讲做加速直线运动或者减速直线运动。
实验3:在光滑的水平面上具有某一初速度的小球,在运动方向一侧放一条形磁铁,小球将
如何运动?学生实验
结论:小球将改变轨迹而做曲线运动。
总结论:曲线运动的条件是,
当物体所受合力的方向跟物体
运动的方向不在同一条直线时,物体就做曲线运动。
四、曲线运动的性质
问题:曲线运动是匀速运动还是变速运动学生思考讨论问题引导:
速度是(矢量、标量),所以只要速度方向变化,速度矢量就发生了,也就具有,因此曲线运动是。结论:曲线运动是变速运动。
【课堂训练】
例题1、已知物体运动的初速度v的方向及受恒力的方向如图所示,则图中可能正确的运动
例题2、一个质点受到两个互成锐角的F1和F2的作用,有静止开始运动,若运动中保持力的方向不变,但F1突然增大到F1+F,则此质点以后做_______________________解析:
例题3、一个物体在光滑的水平面上以v做曲线运动,已知运动过程中只受一个恒力作用,
运动轨迹如图所示,则,自M到N的过程速度大小的变化为________________________请做图分析:
【课堂小结】
1.曲线运动是变速运动,及速度的有可能变化,速度的方向一定变化。
2.当物体所受合力的方向跟物体运动的方向不在同一条直线时,物体就做曲线运动,所
以物体的加速度方向也跟速度方向不在同一直线上。
【板书设计】
第一节抛体运动
1、曲线运动
定义:运动的轨迹是曲线的运动叫做曲线运动。2、曲线运动速度的方向
质点在某一点的速度,沿曲线在这一点的切线方向3、曲线运动的条件
当物体所受合力的方向跟物体运动的方向不在同一条直线时,物体就做曲线运动。4、曲线运动的性质
曲线运动过程中,速度方向始终在变化,因此曲线运动是变速运动。
【训练答案】
例1、B例2、匀变速曲线运动例3、自M到N速度变大(因为速度与力的夹角为锐角。
篇7:高二物理教案
⑴课题:高二物理:第一章静电场
⑵授课教师:黎亭
⑶课时:2小时
⑷学生现状分析:现物理水平为60分左右,属于中下水平。补课安排:复习讲解高二知识,抓基础知识为切入点,后继强化。
(5)教学内容
高二物理上册第一章第一节与第二节
第一节电荷及其守恒定律
本节从物质微观结构的角度认识物体带电的本质,使物体带电的方法。给学生渗透看问题要透过现象看本质的思想。摩擦起电、两种电荷的相互作用、电荷量的概念初中已接触,电荷守恒定律对学生而言不难接受,在此从原子结构的基础上做本质上分析,使学生体会对物理螺旋式学习的过程。本节关键是做好实验,从微观分析产生这种现象的原因。有了使物体带电的理解,电荷守恒定律便水到渠成,进一步巩固高中的守恒思想。培养学生透过现象看本质的科学习惯。通过阅读材料,展示物理学发展中充满睿智和灵气的科学思维,弘扬前辈物理学家探寻真理的坚强意志和科学精神。
【教学预设】
使用幻灯片时充分利用它的高效同时,尽量保留黑板的功能始终展示本节课的知识框架。
在条件允许的情况下努力使实验简化,给学生传递这样一个信息──善于从简单中捕捉精彩瞬间,从日常生活中发现和体验科学(阅读材料)。
练习题设计力求有针对性、导向性、层次性。
【教学目标】
(一)知识与技能
知道两种电荷及其相互作用。
知道三种使物体带电的方法及带电本质。
知道电荷守恒定律。
知道什么是元电荷、比荷、电荷量、静电感应的概念。
(二)过程与方法
物理学螺旋式递进的学习方法。
由现象到本质分析问题的方法。
(三)情感态度与价值观
通过对本节的学习培养学生从微观的角度认识物体带电的本质—透过现象看本质。
科学家科学思维和科学精神的渗透─—课后阅读材料。
【教学重、难点】
重点:电荷守恒定律
难点:利用电荷守恒定律分析解决相关问题摩擦起电和感应起电的相关问题。
【教学过程】
引入新课:今天开始我们进入物理学另一个丰富多彩,更有趣的殿堂,电和磁的世界。高中的电学知识大致可分为电场的电路,本章将学习静电学,将从物质的微观的角度认识物体带电的本质,电荷相互作用的基本规律,以及与静止电荷相联系的静电场的基本性质。
【板书】第一章静电场
【板书】一、电荷(复习初中知识)
1.两种电荷:正电荷和负电荷:把用丝绸摩擦过的玻璃棒所带的电荷称为正电荷,用正数表示。把用毛皮摩擦过的硬橡胶棒所带的电荷称为负电荷,用负数表示。
2.电荷及其相互作用:同种电荷相互排斥,异种电荷相互吸引。
3.使物体带电的方法:
摩擦起电──学生自学P2后解释摩擦起电的原因,培养学生理解能力和语言表达能力。为电荷守恒定律做铺垫。
演示摩擦起电,用验电器检验是否带电,让学生分析使金属箔片张开的原因过渡到接触起电。
接触起电──电荷从一个物体转移到另一个物体上仔细观察从靠近到接触过程中还有哪些现象?──靠近未接触时箔片张开张开意味着箔片带电?看来还有其他方式使物体带电?其带电本质是什么?──设置悬念。
自学P3第二段后,回答自由电子和离子的概念及各自的运动特点。解释观察到的现象。
再演示,靠近(不接触)后再远离,箔片又闭合,即不带电,有没有办法远离后箔片仍带电?
提供器材,鼓励学生到时讲台演示。得出静电感应和感应起电。
静电感应和感应起电──电荷从物体的一部分转移到另一部分。
通过对三种起电方式本质的分析,让学生思考满足共同的规律是什么?得出电荷守恒定律。
学生自学教材,掌握电荷守恒定律的内容,电荷量、元电荷、比荷的概念。
【板书】
二、电荷守恒定律:
电荷既不能创造,也不能消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分。
一个与外界没有电荷交换的系统,电荷的代数和总是保持不变。
【板书】
三、几个基本概念
电荷量──电荷的多少叫做电荷量。符号:Q或q单位:库仑符号:C。
元电荷──电子所带的电荷量,用e表示,e=1.60×10C。
注意:所有带电体的电荷量或者等于e,或者等于e的整数倍。电荷量是不能连续变化的物理量。最早由美国物理学家密立根测得
比荷──电荷的电荷量q与其质量m的比值q/m,符号:C/㎏。
静电感应和感应起电──当一个带电体靠近导体时,由于电荷间相互吸引或排斥,导体中的自由电荷便会趋向或远离带电体,使导体靠近带电体的一端带异号电荷,远离一端带同号电荷。这种现象叫做静电感应。利用静电感应使金属导体带电的过程叫做感应起电。
课堂训练:见附件
篇8:高二物理教案
教学目的
1.了解组成物质的分子具有动能及势能,并且了解分子平均动能和分子势能都与哪些因素有关。
2.理解物体的内能以及物体内能由物体的状态所决定。
教学重点
物体的内能是一个重要的概念,是本章教学的一个重点。学生只有正确理解物体的内能才能理解做功和热传递及物体内能的变化关系。
教学难点
分子势能。
教学过程
一、复习提问
什么样的能是势能?弹性势能的大小与弹簧的形变关系怎样?
二、新课教学
1.分子动能。
(1)组成物质的分子总在不停地运动着,所以运动着的分子具有动能,叫做分子动能。
(2)启发性提问:根据你对布朗运动实验的观察,分子运动有什么样的特点?
应答:分子运动是杂乱无章的,在同一时刻,同一物体内的分子运动方向不相同,分子的运动速率也不相同。
教师分析分子速率分布特点——在同一时刻有的分子速率大,有的分子速率小,从大量分子总体来看,速率很大和速率很小的分子是少数,大多数分子是中等大小的速率。
教帅进一步指出:由于分子速率不同,所以每个分子的动能也不同。对于热现象的研究来说,每个分子的动能是毫无意义的,而有意义的是物体内所有分子动能的平均值,此平均值叫做分子的平均动能。
(3)要学生讨论研究。
用分子动理论的观点,分析冷、热水的区别。
讨论结论应是:组成冷、热水的大量分子的速率各不相同,则其动能也各不相同,但就冷水总体来说分子的平均动能小于热水的分子平均动能。
教师指出:由此可见,温度是物体分子平均动能的标志。
2.分子势能。
(1)根据复习提问的回答(地面上的物体与地球之间有相互作用力;发生了形变的弹簧各部分间存在着相互作用力,因此在它们的相对位置发生变化时,它们之间便具有势能)说明分子间也存在着相互作用力,所以分子也具有由它们相对位置所决定的能,称之为分子势能。
(2)分子势能与分子间距离的关系。
提问:分子力与分子间距离有什么关系?
应答:当r=r0时,F=0,rr0时,F为引力。
教师指出:由于分子间既有引力又有斥力,好象弹簧形变有伸长或压缩两种情况,因此分子势能与分子间距离也分两种情况。
①当r>r0时,F为引力,分子势能随着r的增大而增加。此种情况与弹簧被拉长弹性势能的增加很相似。
②当r
小结:分子势能随着分子间距离变化而变化,而组成物体的大量分子间距离若增大(减小)则宏观表现为物体体积增大(减小)。可见分子势能跟物体体积有关。
(3)物体的内能。
教师指出:物体里所有的分子动能和势能的总和叫做物体的内能。由此可知一切物体都具有内能。
①物体的内能是由它的状态决定的(状态是指温度、体积、物态等)。
提问:对于质量相等、温度都是100℃的水和水蒸气来说它们的内能相同吗?
应答,质量相等意味着它们的分子数相同,温度相等意味着它们的平均动能相同,但由于水蒸气分子间平均距离比水分子间平均距离大得多,分子势能也大得多,因而质量相等的水蒸气的内能比水大。
②物体的状态发生变化时,物体的内能也随着变化。
举例说明:当水沸腾时,水的温度保持不变,所供给的大量能用于把分子拉开,增大了分子势能,因而增大了物体的内能,当水汽凝结时,分子动能没有明显变化,但分子靠得更紧密了,分子势能便减小了,因此物体的内能减小了。
③物体的内能是不同于机械能的另一种形式的能。
a.静止在地面上的物体以地球为参照物,物体的机械能等于0,但物体内部的分子仍然在不停地运动着和相互作用着,物体的内能永远不能为0。
b.物体在具有一定的内能时,也可以具有一定的机械能。如飞行的子弹。
C.不能把物体的机械能和物体的内能混淆。只要物体的温度、体积、物态不变,不论物体的机械能怎样变化其内能仍保持不变。反之,尽管物体的内能在变化,它的机械能可以保持不变。
(4)学生讨论题:
①静止在光滑水平地面上的木箱具有什么能?若木箱沿光滑水平地面加速运动,木箱具有什么能?此时木箱的内能与静止时相比较变化了没有?
②质量相等而温度不相等的两杯水,哪一杯水具有较大的内能?温度相同而质量不等的两杯水,哪一杯水具有较大的内能?
最后总结一下本课要点。
篇9:高二物理教案
【课 题】人教版《普通高中课程标准实验教科书物理(选修3—1)》第一章第二节《库仑定律》
【课 时】1学时
【三维目标】
知识与技能:
1、知道点电荷的概念,理解并掌握库仑定律的含义及其表达式;
2、会用库仑定律进行有关的计算;
3、知道库仑扭称的原理。
过程与方法:
1、通过学习库仑定律得出的过程,体验从猜想到验证、从定性到定量的科学探究过程,学会通过间接手段测量微小力的方法;
2、通过探究活动培养学生观察现象、分析结果及结合数学知识解决物理问题的研究方法。
情感、态度和价值观:
1、通过对点电荷的研究,让学生感受物理学研究中建立理想模型的重要意义;
2、通过静电力和万有引力的类比,让学生体会到自然规律有其统一性和多样性。
【教学重点】
1、建立库仑定律的过程;
2、库仑定律的应用。
【教学难点】
库仑定律的实验验证过程。
【教学方法】
实验探究法、交流讨论法。
【教学过程和内容】
<引入新课>同学们,通过前面的学习,我们知道“同种电荷相互排斥,异种电荷相互吸引”,这让我们对电荷间作用力的方向有了一定的认识。我们把电荷间的作用力叫做静电力,那么静电力的大小满足什么规律呢?让我们一起进入本章第二节《库仑定律》的学习。
<库仑定律的发现>
活动一:思考与猜想
同学们,电荷间的作用力是通过带电体间的相互作用来表现的,
因此,我们应该研究带电体间的相互作用。可是,生活中带电体的大小和形状是多种多样的,这就给我们寻找静电力的规律带来了麻烦。
早在300多年以前,伟大的牛顿在研究万有引力的同时,就曾对带电纸片的运动进行研究,可是由于带电纸片太不规则,牛顿对静电力的研究并未成功。
(问题1)大家对研究对象的选择有什么好的建议吗?
在静电学的研究中,我们经常使用的带电体是球体。
(问题2)带电体间的作用力(静电力)的大小与哪些因素有关呢?
请学生根据自己的生活经验大胆猜想。
<定性探究>电荷间的作用力与影响因素的关系
实验表明:电荷间的作用力F随电荷量q的增大而增大;随距离r的增大而减小。
(提示)我们的研究到这里是否可以结束了?为什么?
这只是定性研究,应该进一步深入得到更准确的定量关系。
(问题3)静电力F与r,q之间可能存在什么样的定量关系?
你觉得哪种可能更大?为什么?(引导学生与万有引力类比)
活动二:设计与验证
<实验方法>
(问题4)研究F与r、q的定量关系应该采用什么方法?
控制变量法——(1)保持q不变,验证F与r2的反比关系;
(2)保持r不变,验证F与q的正比关系。
<实验可行性讨论>、
困难一:F的测量(在这里F是一个很小的力,不能用弹簧测力计直接测量,你有什么办法可以实现对F大小的间接测量吗?)
困难二:q的测量(我们现在并不知道准确测定带电小球所带的电量的方法,要研究F与q的定量关系,你有什么好的想法吗?)
(思维启发)有这样一个事实:两个相同的金属小球,一个带电、一个不带电,互相接触后,它们对相隔同样距离的第三个带电小球的作用力相等。
——这说明了什么?(说明球接触后等分了电荷)
(追问)现在,你有什么想法了吗?
<实验具体操作>定量验证
实验结论:两个点电荷间的相互作用力,与它们的电荷量的乘积成正比,与它们距离的二次方成反比。
<得出库仑定律>同学们,我们一起用了大约20分钟得到的这个结论,其实在物理学发展史上,数位伟大的科学家用了近30年的时间得到的并以法国物理学家库仑的名字来命名的库仑定律。
启示一:类比猜想的价值
读过牛顿著作的人都可能推想到:凡是表现这种特性的相互作用都应服从平方反比定律。这似乎用类比推理的方法就可以得到电荷间作用力的规律。正是这样的类比,让电磁学少走了许多弯路,形成了严密的定量规律。马克·吐温曾说“科学真是迷人,根据零星的事实,增添一点猜想,竟能赢得那么多的收获!”。科学家以广博的知识和深刻的洞察力为基础进行的猜想,才是最具有创造力的思维活动。
然而,英国物理史学家丹皮尔也说“自然如不能被目证那就不能被征服!”
启示二:实验的精妙
1785年库仑在前人工作的基础上,用自己设计的扭称精确验证得到了库仑定律。(库仑扭称实验的介绍:这个实验的设计相当巧妙。把微小力放大为力矩,将直接测量转换为间接测量,从而得到静电力的作用规律——库仑定律。)
<讲解库仑定律>
1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。
2.数学表达式:
(说明),叫做静电力常量。
3.适用条件:(1)真空中(一般情况下,在空气中也近似适用);
(2)静止的;(3)点电荷。
(强调)库仑定律的公式与万有引力的公式在形式上尽管很相似,但仍是性质不同的两种力。我们来看下面的题目:
<达标训练>
例题1:(通过定量计算,让学生明确对于微观带电粒子,因为静电力远远大于万有引力,所以我们往往忽略万有引力。)
(过渡)两个点电荷的静电力我们会求解了,可如果存在三个电荷呢?
(承前启后)两个点电荷之间的作用力不因第三个点电荷的存在而有所改变。因此,多个点电荷对同一个点电荷的作用力等于各点电荷单独对这个点电荷的作用力的矢量和。
例题2:(多个点电荷对同一点电荷作用力的叠加问题。一方面巩固库仑定律,另一方面,也为下一节电场强度的叠加做铺垫。)
(拓展说明)库仑定律是电磁学的基本定律之一。虽然给出的是点电荷间的静电力,但是任何一个带电体都可以看成是由许多点电荷组成的。所以,如果知道了带电体的电荷分布,就可以根据库仑定律和平行四边形定则求出带电体间静电力的大小和方向了。而这正是库仑定律的普遍意义。
<本堂小结>(略)
<课外拓展>
1、课本第8页的“科学漫步”栏目,介绍的是静电力的应用。你还能了解更多的应用吗?
2、万有引力与库仑定律有相似的数学表达式,这似乎在预示着自然界的和谐统一。课后请同学查阅资料,了解自然界中的“四种基本相互作用”及统一场理论。
篇10:高二物理教案
1、理解振幅、周期和频率的概念,知道全振动的含义。
2、了解初相位和相位差的概念,理解相位的物理意义。
3、了解简谐运动位移方程中各量的物理意义,能依据振动方程描绘振动图象。
4、理解简谐运动图象的物理意义,会根据振动图象判断振幅、周期和频率等。
重点难点:对简谐运动的振幅、周期、频率、全振动等概念的理解,相位的物理意义。
教学建议:本节课以弹簧振子为例,在观察其振动过程中位移变化的周期性、振动快慢的特点时,引入描绘简谐运动的物理量(振幅、周期和频率),再通过单摆实验引出相位的概念,最后对比前一节得出的图象和数学表达式,进一步体会这些物理量的含义。本节要特别注意相位的概念。
导入新课:你有喜欢的歌手吗?我们常常在听歌时会评价,歌手韩红的音域宽广,音色嘹亮圆润;歌手王心凌的声音甜美;歌手李宇春的音色沙哑,独具个性……但同样的歌曲由大多数普通人唱出来,却常常显得干巴且单调,为什么呢?这些是由音色决定的,而音色又与频率等有关。
1、描述简谐运动的物理量
(1)振幅
振幅是振动物体离开平衡位置的①最大距离。振幅的②两倍表示的是振动的物体运动范围的大小。
(2)全振动
振子以相同的速度相继通过同一位置所经历的过程称为③全振动,这一过程是一个完整的振动过程,振动质点在这一振动过程中通过的路程等于④4倍的振幅。
(3)周期和频率
做简谐运动的物体,完成⑤全振动的时间,叫作振动的周期;单位时间内完成⑥全振动的次数叫作振动的频率。在国际单位制中,周期的单位是⑦秒,频率的单位是⑧赫兹。用T表示周期,用f表示频率,则周期和频率的关系是⑨f=。
(4)相位
在物理学中,我们用不同的⑩相位来描述周期性运动在各个时刻所处的 不同状态。
2、简谐运动的表达式
(1)根据数学知识,xOy坐标系中正弦函数图象的表达式为 y=Asin(ωx+φ)。
(2)简谐运动中的位移(x)与时间(t)关系的表达式为 x=Asin(ωt +φ),其中 A代表简谐运动的振幅, ω叫作简谐运动的“圆频率”, ωt+φ代表相位。
1、弹簧振子的运动范围与振幅是什么关系?
解答:弹簧振子的运动范围是振幅的两倍。
2、周期与频率是简谐运动特有的概念吗?
解答:不是。描述任何周期性过程,都可以用这两个概念。
3、如果两个振动存在相位差,它们振动步调是否相同?
解答:不同。
主题1:振幅
问题:(1)同一面鼓,用较大的力敲鼓面和用较小的力敲鼓面,鼓面的振动有什么不同?听上去感觉有什么不同?
(2)根据(1)中问题思考振幅的物理意义是什么?
解答:(1)用较大的力敲,鼓面的振动幅度较大,听上去声音大;反之,用较小的力敲,鼓面的振动幅度较小,听上去声音小。
(2)振幅是描述振动强弱的物理量,振幅的大小对应着物体振动的强弱。
知识链接:简谐运动的振幅是物体离开平衡位置的最大距离,是标量,表示振动的强弱和能量,它不同于简谐运动的位移。
主题2:全振动、周期和频率
问题:(1)观察课本“弹簧振子的简谐运动”示意图,振子从P0开始向左运动,怎样才算完成了全振动?列出振子依次通过图中所标的点。
(2)阅读课本,思考并回答下列问题:周期和频率与计时起点(或位移起点)有关吗?频率越大,物体振动越快还是越慢?振子在一个周期内通过的路程和位移分别是多少?
(3)完成课本“做一做”,猜想弹簧振子的振动周期可能由哪些因素决定?假如我们能看清楚振子的整个运动过程,那么从什么位置开始计时才能更准确地测量振动的周期?为什么?
解答:(1)振子从P0出发后依次通过O、M'、O、P0、M、P0的过程,就是全振动。
(2)周期和频率与计时起点(或位移起点)无关;频率越大,周期越小,表示物体振动得越快。振子在一个周期内通过的路程是4倍的振幅,而在一个周期内的位移是零。
(3)影响弹簧振子周期的因素可能有振子的质量、弹簧的劲度系数等;从振子经过平衡位置时开始计时能更准确地测量振动周期,因为振子经过平衡位置时速度最大,这样计时的误差最小。
知识链接:完成全振动,振动物体的位移和速度都回到原值(包括大小和方向),振动物体的路程是振幅的4倍。
主题3:简谐运动的表达式
问题:阅读课本有关“简谐运动的表达式”的内容,讨论下列问题。
(1)一个物体运动时其相位变化多少就意味着完成了全振动?
(2)若采用国际单位,简谐运动中的位移(x)与时间(t)关系的表达式x=Asin(ωt+φ)中ωt+φ的单位是什么?
(3)甲和乙两个简谐运动的频率相同,相位差为 ,这意味着什么?
解答:(1)相位每增加2π就意味着完成了全振动。
(2)ωt+φ的单位是弧度。
(3)甲和乙两个简谐运动的相位差为 ,意味着乙(甲)总是比甲(乙)滞后个周期或次全振动。
知识链接:频率相同的两个简谐运动,相位差为0称为“同相”,振动步调相同;相位差为π称为“反相”,振动步调相反。
1、(考查对全振动的理解)如图所示,弹簧振子以O为平衡位置在B、C间做简谐运动,则( )。
A、从B→O→C为全振动
B、从O→B→O→C为全振动
C、从C→O→B→O→C为全振动
D、从D→C→O→B→O为全振动
【解析】选项A对应过程的路程为2倍的振幅,选项B对应过程的路程为3倍的振幅,选项C对应过程的路程为4倍的振幅,选项D对应过程的路程大于3倍的振幅,又小于4倍的振幅,因此选项A、B、D均错误,选项C正确。
【答案】C
【点评】要理解全振动的概念,只有振动物体的位移与速度第同时恢复到原值,才是完成全振动。
2、(考查简谐运动的振幅和周期)周期为T=2 s的简谐运动,在半分钟内通过的路程是60 cm,则在此时间内振子经过平衡位置的次数和振子的振幅分别为( )。
A、15次,2 cm B、30次,1 cm
C、15次,1 cm D、60次,2 cm
【解析】振子完成全振动经过轨迹上每个位置两次(除最大位移处外),而每次全振动振子通过的路程为4个振幅。
【答案】B
【点评】一个周期经过平衡位置两次,路程是振幅的4倍。
3、图示为质点的振动图象,下列判断中正确的是( )。
A、质点振动周期是8 s
B、振幅是4 cm
C、4 s末质点的速度为负,加速度为零
D、10 s末质点的加速度为正,速度为零
【解析】由振动图象可得,质点的振动周期为8 s,A对;振幅为2 cm,B错;4 s末质点经平衡位置向负方向运动,速度为负向最大,加速度为零,C对;10 s末质点在正的最大位移处,加速度为负值,速度为零,D错。
【答案】AC
【点评】由振动图象可以直接读出周期与振幅,可以判断各个时刻的速度方向与加速度方向。
4、(考查简谐运动的表达式)两个简谐运动分别为x1=4asin(4πbt+π)和x2=2asin(4πbt+π),求它们的振幅之比、各自的频率,以及它们的相位差。
【解析】根据x=Asin(ωt+φ)得:A1=4a,A2=2a,故振幅之比 = =2
由ω=4πb及ω=2πf得:二者的频率都为f=2b
它们的相位差:(4πbt+π)—(4πbt+π)=π,两物体的振动情况始终反相。
【答案】2∶1 2b 2b π
【点评】要能根据简谐运动的表达式得出振幅、频率、相位。
拓展一:简谐运动的表达式
1、某做简谐运动的物体,其位移与时间的变化关系式为x=10sin 5πt cm,则:
(1)物体的振幅为多少?
(2)物体振动的频率为多少?
(3)在时间t=0、1 s时,物体的位移是多少?
(4)画出该物体简谐运动的图象。
【分析】简谐运动位移与时间的变化关系式就是简谐运动的表达式,将它与教材上的简谐运动表达式进行对比即可得出相应的物理量。
【解析】简谐运动的表达式x=Asin(ωt+φ),比较题中所给表达式x=10sin 5πt cm可知:
(1)振幅A=10 cm。
(2)物体振动的频率f= = Hz=2、5 Hz。
(3)t=0、1 s时位移x=10sin(5π×0、1) cm=10 cm。
(4)该物体简谐运动的周期T==0、4 s,简谐运动图象如图所示。
【答案】(1)10 cm (2)2、5 Hz (3)10 cm (4)如图所示
【点拨】在解答简谐运动表达式的题目时要注意和标准表达式进行比较,知道A、ω、φ各物理量所代表的意义,还要能和振动图象结合起来。
拓展二:简谐振动的周期性和对称性
甲
2、如图甲所示,弹簧振子以O点为平衡位置做简谐运动,从O点开始计时,振子第到达M点用了0、3 s的时间,又经过0、2 s第二次通过M点,则振子第三次通过M点还要经过的时间可能是( )。
A、s B、s C、1、4 s D、1、6 s
【分析】题目中只说从O点开始计时,并没说明从O点向哪个方向运动,它可能直接向M点运动,也可能向远离M点的方向运动,所以本题可能的选项有两个。
乙
【解析】如图乙所示,根据题意可知振子的运动有两种可能性,设t1=0、3 s,t2=0、2 s
第一种可能性:=t1+=(0、3+ ) s=0、4 s,即T=1、6 s
所以振子第三次通过M点还要经过的时间t3=+2t1=(0、8+2×0、3) s=1、4 s
第二种可能性:t1—+=,即T= s
所以振子第三次通过M点还要经过的时间t3=t1+(t1—)=(2×0、3— ) s= s。
【答案】AC
【点拨】解答这类题目的关键是理解简谐运动的对称性和周期性。明确振子往复通过同一点时,速度大小相等、方向相反;通过关于平衡位置对称的两点时,速度大小相等、方向相同或相反;往复通过同一段距离或通过关于平衡位置对称的两段距离时所用时间相等。另外要注意,因为振子振动的周期性和对称性会造成问题的多解,所以求解时别漏掉了其他可能出现的情况。
篇11:高二物理教案
教学内容:人教版的普通高中课程标准实验教科书选修3—3教材第八章气体第一节气体的.等温变化。
教学设计特点:突出物理规律形成的感性基础和理性探索的有机结合;通过问题驱动达成教目标的有效实现;重视物理从生活中来最终回到生活中去。
1.教学目标
1、1知识与技能
(1)知道什么是等温变化;
(2)掌握玻意耳定律的内容和公式;知道定律的适用条件。
(3)理解等温变化的P—V图象与P—1/V图象的含义,增强运用图象表达物理规律的能力;
1、2过程与方法
带领学生经历探究等温变化规律的全过程,体验控制变量法以及实验中采集数据、处理数据的方法。
1、3情感、态度与价值观
让学生切身感受物理现象,注重物理表象的形成;用心感悟科学探索的基本思路,形成求实创新的科学作风。
2、教学难点和重点
重点:让学生经历探索未知规律的过程,掌握一定质量的气体在等温变化时压强与体积的关系,理解 p—V 图象的物理意义。
难点:学生实验方案的设计;数据处理。
3、教具:
塑料管,乒乓球、热水,气球、透明玻璃缸、抽气机,u型管,注射器,压力计。
4、设计思路
学生在初中时就已经有了固体、液体和气体的概念,生活中也有热胀冷缩的概念,但对于气体的三个状态参量之间有什么样的关系是不清楚的。新课程理念要求我们,课堂应该以学生为主体,强调学生的自主学习、合作学习,着重培养学生的创新思维能力和实证精神。这节课首先通过做简单的演示实验,让学生明白气体的质量、温度、体积和压强这几个物理量之间存在着密切的联系;然后与学生一道讨论实验方案,确定实验要点,接着师生一道实验操作,数据的处理,得出实验结论并深入讨论,最后简单应用等温变化规律解决实际问题。
5.教学流程:(略)
6.教学过程
6、l课题引入
演示实验:变形的乒乓球在热水里恢复原状
乒乓球里封闭了一定质量的气体,当它的温度升高,气体的压强就随着增大,同时体积增大而恢复原状。由此知道气体的温度、体积、压强之间有相互制约的关系。本章我们研究气体各状态参量之间的关系。
对于气体来说,压强、体积、温度与质量之间存在着一定的关系。高中阶段通常就用压强、体积、温度描述气体的状态,叫做气体的三个状态参量。对于一定质量的气体当它的三个状态参量都不变时,我们就说气体处于某一确定的状态;当一个状态参量发生变化时,就会引起其他状态参量发生变化,我们就说气体发生了状态变化。这一章我们的主要任务就是研究气体状态变化的规律。
出示课题: 第八章 气体
师问:同时研究三个及三个以上物理量的关系,我们要用什么方法呢?请举例说明。
生:控制变量法
比如要研究压强与体积之间的关系,需要保持质量和温度不变,再如要研究气体压强与温度之间的关系,需要保持质量和体积不变。
师:我们这节课首先研究气体的压强和体积的变化关系。
我们把温度和质量不变时气体的压强随体积的变化关系叫做等温变化。出示本节课题:
第一节 气体的等温变化
6、2 新课进行
一、实验探究
1、学生体验压强与体积的关系得出定性结论
全体同学体验: 每个同学用力在口腔中摒住一口气,然后用手去压脸颊,你会怎么样,思考为什么?
小组体验:每桌同学用一只小的注射器体验:一个同学用手指头封闭一定质量的气体,另一个同学缓慢压缩气体,体积减小时第一个同学的手指有什么感觉,说明什么呢?反之当我们拉动活塞增大气体体积时,手指有什么感觉,说明什么呢?要求学生体验并说出自己的感觉和结论(即压缩气体,体积减小,压强增大;反之,体积增大压强减小)
2、猜想
引导学生猜想:我们猜想:在一般情况下,一定质量的气体当温度不变时,气体的压强和体积之间可能有什么定量关系呢?
学生:压强与体积成反比例关系(从最简单的定量关系做起)
师:一定质量的气体在发生等温变化时压强与体积是否是成反比例的关系,需要我们进一步研究、这节课我们用实验探究这一课题。
3、实验验证:
(1)实验设计:
首先,要求学生完整的复述我们的实验目的:探究一定质量的气体在温度不变情况下压强与体积之间的定量关系、
要求学生根据放在桌上的器材,思考试验方案,并思考以下几个问题:
问题1:本实验的研究对象是什么?如何取一定质量的气体?实验条件是什么?如何实现这一条件?
学生讨论回答:研究对象是一定质量的气体,用活塞封闭一定质量的气体在注射器内以获取, 实验条件是气体质量不变, 气体温度不变;活塞加油增加密闭性,推拉活塞改变体积和压强;不用手握注射器;缓慢推拉活塞,稳定后再读数。
(或者有其他的实验方案)
问题2: 数据收集 本实验中应该要收集哪些数据? 用什么方法测量?
学生:要收集气体的不同压强和体积,用气压计可以测量压强,注射器上面的读数可以得到体积。
问题3:数据处理 怎样处理上述数据才能得到等温条件下压强与体积之间的正确关系呢?(学生讨论并回答)
学生:常用数据处理办法有计算法,图象法等。
老师:能不能说得更具体一点呢?
学生:就是先把V和P乘起来,看看各组的乘积是否相等(或者近似相等),从而得到结论;图像法就是以V为横坐标,P为纵坐标,在用描点作图法,把得到的数据作到坐标系中,再连线,看图像的特点,从而得到两者的定量关系。
再让一个学生把我们刚才分析得到的比较好的实验方法再复述,然后师生互助完成实验。
2、实验过程:
师生共同完成实验: 老师推、拉活塞,一名学生读取数据,另一名学生设计记录表格并记录数据。
数据处理:①简单计算 找压强和体积之间的关系
②学生描绘图象(提示作P—V图像)能否得出结论?
总结提问:各小组是如何处理数据的,结论如何?(实物投影展示)
问题4:若P—V图象为双曲线的一支,则能说明P与V成反比。但能否确定我们做出就一定是是双曲线的一支呢?(还是猜测)我们怎样进一步P和V之间的关系呢?
教师:有一种思想叫做转化的思想。若P—V图象为一双曲线,那么P—1/V图象是什么样子?(过原点的一条直线)那我们就再作一条P—1/V图象看看吧!
(师)计算机拟合:把P—V图象转化为P—1/V图象。我们看到一定质量的气体,在温度不变的情况下,P—1/V图象是一条(几乎)过原点的直线,表明压强与体积成反比。
(三)实验结论:在误差允许的范围内,一定质量的气体在温度不变的条件下压强与体积成反比。(学生叙述)
师:大家看到我们作出来的这条直线,还不是很准确,大家可以分析在实验过程中有哪些地方可能引起实验误差?
学生讨论分析产生误差的原因、
早在17世纪,英国科学家玻意耳和法国科学家马略特分别通过更严谨的实验研究得出了这个结论,被称为玻意耳定律。
二、玻意耳定律
1、内容:一定质量的某种气体,在温度不变的条件下压强P与体积V成反比。
2、公式:PV=C(常量)或P1V1=P2V2(其中P1V1和 P2V2分别为气体在两个状态下的压强和体积)
3、图象:P—1/V图象:过原点的直线——等温线
P—V图象:双曲线的一支——等温线
三、拓展思考
问题5:在同一温度下,取不同质量的同种气体为研究对象, PV乘积C一样吗?即对不同的气体,C是一个普适常量吗?(学生思考不能求解或回答不一样)
师问:怎样才能得到正确的结果呢?(猜想—实验验证)
学生:改变气体的质量用同样的方法重新测量,测量数据记录在同一表格中,通过简单的计算就能得到结果。
结论:不一样。质量越大,PV乘积越大。P—V图象离坐标轴越远,P—1/V图象斜率越大。
问题6:取相同质量的同种气体,在不同温度下,作出的P—V图象是否一样?(学生猜想——验证)
结论:不一样。温度较高时,PV乘积较大,P—V图象离坐标轴越远,P—1/V图象斜率较大。
四、玻意耳定律的应用之定性解释:
问题一:气球涨大视频。学生分析。
问题二:小实验。装水的瓶子下有小洞,当盖子打开时水会喷出,然后合上盖子则水就不会持续地流出了。
解释:盖子打开时,小孔上方的压强始终大于外面的压强,所以水会喷出,当盖子盖上时,水的上方被封闭了一定质量的气体,当有水流出后,瓶中空气的体积变大,根据波意耳定律压强变小,当孔上方压强小于外部大气压时,水就流不出去了。
五.课堂小结
1、方法 ①研究多变量问题时用控制变量法
②实验探究方法:猜想——验证——进一步猜想——再验证——得到结论
2、知识 玻意耳定律:一定质量的某种气体,在温度不变的条件下压强P与体积V成反比。
六.教学后记:
1.课堂上让学生从自身体验开始,充分参与科学探究的全过程,熟悉科学探究未知世界的一般流程,并坚持渗透实事求是和精益求精的科学精神。
2.教学中对应用数学方法处理物理数据,从而得出简洁的物理学规律的过程,让学生多练习多体验,以使学生真正掌握,并且多给时间让学生从图像中找出规律,以提高学生认识图像与应用图像分析问题的能力。
3.教学中学生参与小实验及视频材料能很好地吸引学生的注意力,提高教学的有效性。
4、物理来源于社会生活实践,反之也能解释自然界及生活和生产中的相关现象,有效杜绝物理和生活相脱节的现象发生、也有利于学生正确物理观的形成。
篇12:高二物理教案
学习目标
1. 知道自然界中热侍导的方向性。
2. 初步了解热力学第二定律,并能用热力学第二定律解释第二类永动机不能制造成功的原因。
3. 能用热力学第二定律解释自然界中的能量转化、转移以及方向性问题。
学习重、难点
热力学第二定律及用定律解释一些实际问题。
学法指导
自主、合作、探究、师生讨论
知识链接
1.热力学第一定律的内容: 。
2.机械能能否全部转化为内能,那么内能能否全部转化为机械能?举例说明
学习过程
用案人自我创新
[自主学习]
1. 阅读P56思考与讨论提出的问题,体会热传导的方向性。说说你对一切与热现象有关的宏观自然过程都是不可逆的这名话的理解。
2. 热机是一种把内能转化为机械能的装置。热机包括热源、工作物质、冷凝器几部分组成。其工作原理为:热机从热源吸收热量Q1,推动活塞做功W,然后向冷凝器释放热量Q2。根据能量守恒三者关系为:我们把热机做的功W和它从热源吸收的热量Q1的比值叫做热机的效率,用 教type=#_x0000_t75 ole=表示,即 。
思考:热机的效率能否达到100%,为什么?
3. 第二类永动机:
只从单一热源吸收热量,使之完全变为有用的功而引起其它变化的热机。根据你所了解的知识,第二类永动机可能研制成吗?说说你的理由。
4. 热力学第二定律
(1) 两种表述:
①(这是按照热传导的方向性来描述的)。
②(这是按照机械能与热能转化过程的方向性来描述的)。
说明:
(1) 热力学第二定律的两种表述看上去似乎没有什么联系,然而实际上它们是等效的。
(2) 热力学第二定律的实质是它揭示了大量分子参与的宏观过程的方向性,使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。
(3) 热力学第一定律和第二定律的区别:
[例题与习题]
[例1]下列哪些过程具有方向性( )
A热传导过程
B.机械能向内能转化过程
C.气体的扩散过程
D.气体向真空中的膨胀
[例2]根据热力学第二定律,下列说法中正确的是( )
A. 不可能从单一热源吸收热量并把它全部用来做功而不引起其它变化
B. 没有冷凝器,只有单一的热源,能将从单一热源吸收的热量全部用来做或,而不引起其它变化的热机是可能实现的
C. 制冷系统将冰箱里的热量传给外界较高的温度的空气中不引起其它变化
D. 不可能使热量由低温物体传递到高温物体而不引起其它变化
[练习1] 根据热力学第二定律,下列说法中正确的是( )
A. 热机中燃气的内能不可能全部转化成机械能
B. 电流的能不可能全部转化成内能
C. 在火力发电机中,燃气的内能不可能全部变成电能
D. 在热传导中,热量不可能自发地从低温物体传给高温物体。]
[例3]下列说法正确 的是( )
A. 第二类永动机和第一类永动机一样,都违背了能量守恒定律
B. 第二类永动机违背了能量转化的方向性
C. 自然界中的能量是守恒的,所以不用节约能源
D. 自然界中的能量尽管是定恒的,但有的能量便于利用,有的能量不便于利用,帮要节约能源
[例4]关于热力学第一定律和热力学第二定律,下列说法正确的是( )
A. 热力学第一定律指出内能可以与其它形式的能相互转化,而热力学第二定律则指出内能不可能完全转化成其它形式的能,帮这两条定律是相互矛盾的
B. 内能可以全部转化为其它形式的能,只是会产生其它影响,帮两条定律并不矛盾
C. 两条定律都是有关能量的转化定律,它们不但不矛盾,而且没有本质的区别
D. 其实能量守恒定律已经包含了热力学第一定律和热力学第二定律
篇13:高二物理教案
一、教学目标
1.知识目标:
(1)通过本节课的复习,进一步加深对电场概念的理解,使学生明确场的特点,描写场的方法,并能在头脑中建立起场的模型和图象。
(2)加深理解场电荷、检验电荷的概念,深刻理解和掌握电场强度的概念。
(3)能够运用点电荷的电场强度公式进行简单运算。
(4)进一步理解和掌握电场的叠加原理,会计算简单的点电荷组产生的电场。
2.能力目标:
能够运用所学概念、公式进行简单运算,形成一定的解题能力。
二、教学重点、难点
1.进一步深刻理解电场和电场强度的概念是本节课的重点。
2.熟练应用电场强度的概念、场的叠加原理解决有关问题是本节的难点。
三、教学方法:
讲练结合,启发式教学
四、教具:
幻灯片,上节课所用的课件
五、教学过程:
(一)复习提问
1.什么是电场?电场最基本的特性是什么?
2.用什么物理量来描述电场的强弱?是怎样定义的?是矢量还是标量?
3.电场强度的方向是怎样规定的?计算公式你知道有几个?应用时需要注意什么?
4.什么是电场的叠加原理?
引导学生回答:
1.电场的概念:
(1)电场是存在于电荷周围空间里的一种特殊物质。
只要有电荷存在,电荷周围就存在着电场。
(2)电场的基本性质:电场对放在其中的电荷有力的作用。
(这种力叫电场力)
2.电场强度:
(1)用电场强度来描述。定义:物理学中把放入电场中某一点的检验电荷受到的电场力与它的电量的比值叫做这一点的电场强度。简称场强。
(2)定义式:
(适用于任何电场)
(3)E的方向:
E和力F一样,也是矢量。我们规定电场中某点的场强方向与正电荷在该点所受电场力的方向相同,那么负电荷所受电场力的方向与电场强度方向相反。
(4)E的单位:在国际单位制中E的单位:牛/库(N/C)
(5)E的物理意义:
①描述某点电场的强弱和方向,是描述电场力的性质的物理量,是矢量。
②某点的场强E的大小和方向取决于电场,与检验电荷的正负、电量及受到的电场力F无关。
③只能用来量度电场强弱,而不能决定电场强弱。
④为定义式,适用于一切电场
3.点电荷电场的场强:
a、表达式:(此式为决定式,只适用于真空中点电荷的电场)
b、方向:若Q为正电荷,E的方向背离Q,若Q为负电荷,E的方向指向Q。
c、几个点电荷同时存在的空间的电场叠加(场的叠加原理)
如果一个电场由n个点电荷共同激发时,那么电场中任一点的总场强将等于n个点电荷在该点各自产生场强的矢量和。
(应用平行四边形法则)
4、电场力F:
(1)概念:电场力是电荷在电场中受到电场的作用力。
(2)关系:电荷在电场中某点所受到的电场力F由电荷所带电量q与电场在该点的电场强度E两因素决定。即:
①大小:F=qE(电场力的决定式,F和q、E都有关)
②方向:正电荷受电场力方向与E相同,负电荷受电场力方向与E相反。
5、电场强度E和电场力F是两个不同概念
注意点:
1、对象不同
2、决定因素不同
3、方向不一定相同
4、单位不同
(二)进行新课
1.作业讲评
根据上节课学生作业中出现的问题进行适当评析。
2.例题精讲
【例1】带电小球A、C相距30cm,均带正电.当一个带有负电的小球B放在A、C间连线的直线上,且B、C相距20cm时,可使C恰受电场力平衡.A、B、C均可看成点电荷.
①A、B所带电量应满足什么关系?
②如果要求A、B、C三球所受电场力同时平衡,它们的电量应满足什么关系?
学生读题、思考,找学生说出解决方法.
通过对此题的分析和求解,可以加深对场强概念和场强叠加的理解.学生一般从受力平衡的角度进行分析,利用库仑定律求解.在学生解题的基础上做以下分析.
分析与解:
①C处于平衡状态,实际上是要求C处在A、B形成的电场中的电场强度为零的地方.
既然C所在处的合场强为零,那么,C所带电量的正或负、电量的多或少均对其平衡无影响.
②再以A或B带电小球为研究对象,利用上面的方法分析和解决.
答案:①qA∶qB=9∶4,②qA∶qB∶qC=9∶4∶36.
【例2】如图所示,半经为r的硬橡胶圆环上带有均匀分布的正电荷,其单位长度上的带电量为q,现截去环上一小段AB,AB长为(<<),则剩余部分在圆环中心处O点产生的场强多大?方向如何?
学生思考、讨论,可以请学生谈他们的认识与理解.
通过本题的求解,使学生加强对电场场强叠加的应用能力和加深对叠加的理解.
分析与解:
解法之一,利用圆环的对称性,可以得出这样的结果,即圆环上的任意一小段在圆心处所产生的电场场强,都与相对应的一小段产生的场强大小相等,方向相反,相互叠加后为零.由于AB段被截掉,所以,本来与AB相对称的那一小段所产生的场强就成为了整个圆环产生的电场的合场强。因题目中有条件<<,所以这一小段可以当成点电荷,利用点电荷的场强公式可求出答案.
解法之二,将AB段看成是一小段带正电和一小段带负电的圆环叠放,这样仍与题目的条件相符.而带正电的小段将圆环补齐,整个带电圆环在圆心处产生的电场的场强为零;带负电的一小段在圆心处产生的场强可利用点电荷的场强公式求出,这就是题目所要求的答案.
答案:方向指向AB
练习:如图所示,等边三角形ABC的边长为a,在它的顶点B、C上各有电量为Q(>0)的点电荷.试求三角形中心处场强E的大小和方向.
学生自己练习求解,以巩固概念.
通过此题的求解,进一步巩固对场强矢量性的认识和场强叠加理解.
3.课堂练习
(1)下列说法中正确的是
A.只要有电荷存在,电荷周围就一定存在着电场。
B.电场是一种物质,它与其他物质一样,是不依赖于我们的感觉而客观存在的。
C.电荷间的相互作用是通过电场而产生的。
D.电场最基本的性质是对处在它里面的电荷有力的作用。
(2)下列说法中正确的是
A.电场强度反映了电场的力的性质,因此场中某点的场强与检验电荷在该点所受的电场力成正比。
B.场中某点的场强等于,但与检验电荷的受力及带电量无关。
C.场中某点的场强方向即检验电荷在该点的受力方向。
D.公式和对于任何静电场都是适用的
(3)下列说法中正确的是
A.场强的定义式中,F是放入电场中的电荷所受的力,q是放入电场中的电荷的电量。
B.场强的定义式中,F是放入电场中的电荷所受的力,q是产生电场的电荷的电量。
C.在库仑定律的表达式中,是点电荷Q2产生的电场在Q1处的场强的大小。
D.无论定义式
中的q值如何变化,在电场中的同一点,F与q的比值始终不变。
(4)讨论电场力与电场强度的区别。
物理量
比较内容电场力电场强度
区别物理意义电荷在电场中所受的力反映电场的力的属性
决定因素由电荷和电场共同决定仅由电场自身决定
大小F=qEE=F/q
方向正电荷受力与E同向
负电荷受力与E同向规定E的方向为正电荷在该点的受力方向
单位NN/C或V/m
联系F=qE(普遍适用)
(三)小结与反馈练习:
(1)不能说成E正比于F,或E正比于1/q。
(2)检验电荷q在周围是否产生电场?该电场对电源电荷Q有无作用?若有,作用力大小为多大?该点的场强又为多大?
(3)在求电场强度时,不但要计算E的大小,还需强调E的方向。
(四)作业布置:
1.为了确定电场中P点的电场强度大小,用细丝线悬挂一个带负电荷的小球去探测。当球在P点静止后,测出悬线与竖直方向夹角为37°。已知P点场强方向在水平方向上,小球重力为4.0×10-3N。所带电量为0.01C,取Sin37°=0.6,则P点的电场强度大小是多少?
2.真空中,A、B两点上分别放置异种点电荷Q1、Q2,已知两点电荷间引力为1N,Q1=1×10-5C,Q2=-1×10-6C。移开Q1,则Q2在A处产生的场强大小是___________N/C,方向是___________;若移开Q2,则Q1在B处产生的场强大小是____________N/C,方向是___________
3.在x轴上有两个点电荷,一个带正电Q1,一个带负电-Q2,且Q1=2Q2.用E1和E2分别表示两个电荷所产生的场强的大小,则在X轴上[]
A.E1=E2之点只有一处,该处合场强为0
B.E1=E2之点共有两处:一处合场强为0,另一处合场强为2E2
C.E1=E2之点共有三处:其中两处合场强为0,另一处合场强为2E2
D.E1=E2之点共有三处:其中一处合场强为0,另两处合场强为2E2
说明:学习本节课需要注意的问题
1.场强是表示电场强弱的物理量,因而在引入电场强度的概念时,应该使学生了解什么是电场的强弱,同一个电荷在电场中的不同点受到的电场力的大小是不同的,所受电场力大的点,电场强。
2.应当使学生理解为什么可以用比值F/q来表示电场强度,知道这个比值与电荷q无关,是反映电场性质的物理量。
比值定义一个新的物理量是物理学中常用的方法,应结合学生前面学过的类似的定义方法,让学生领会电场强度的定义
篇14:高二物理教案
知识与技能
1、理解磁通量和磁通密度的意义
2、能判断磁通的变化情况
过程与方法
1、能过亲自动手、观察实验,理解“无论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生”的道理
2、知道在电磁感应现象中能量守恒定律依然适用
3、会利用“产生条件”判定感应电流能否产生
情感态度与价值观
4、培养学生动手观察实验的能力,分析问题,解决问题的能力
5、培养学生实事求是的科学精神、坚持不懈地探究新理论的精神
使学生认识“从个性中发现共性,再从共性中理解个性,从现象认识本质以及事物有普遍联系的辨证唯物主义观点
教学重点
如何判断磁通量有无变化
教学难点及难点突破
通过能量守恒、能量转化之间的关系理解磁能量的概念
教学方法
边实验边讲解
教学用具
演示用的电流表,蹄形磁铁、条形磁铁、铁架台、线圈、螺线管、渭动变阻器、电键、电源、导线
教学过程
教师活动预设学生活动预计课堂情况随笔
引入:在漫长的人类历史长河中,随着科学技术的发展进步,重大发现和发明相继问世,极大地解放了生产力,推动了人类社会的发展,尤其是我们刚刚跨过的20世纪,更是科学技术飞速发展的时期,经济建议离不开能源,最好的能源就是电能,人类的生产生少,经济建设各方面都离不开电能,饮水思源,我们不能忘记为人类利用电能做出卓越贡献的科学家电法拉第
法拉第在奥斯特于18发现电流的磁效应后,开始投入到磁生电的探索中,经过十处坚持不懈地努力,1831年终于发现了磁生电的规律,开辟了人类的电气化时代
本节我们学习电磁感应现象的基本知识
回顾已有知识:
描述磁场大小和方向的物理量是什么?
一个磁感应强度为B的匀强磁场放置,则穿过这个面的磁感线的条数就是确定的.我们把B与S的乘积叫做穿过这个面的磁通量.
(1)定义:面积为S,垂直匀强磁场B放置,则B与S的乘积,叫做穿过这个面的磁通量,用Ф表示.
(2)公式:Ф=B・S
(3)单位:韦伯(Wb)1Wb=1T・1m2=1V・s
(4)物理意义:磁通量就是表示穿过这个面的磁感线条数.对于同一个平面,当它跟磁场方向垂直时,磁场越强,穿过它的磁感线条数越多,磁通量就越大.当它跟磁场方向平行时,没有磁感线穿过它,则磁通量为零.
注意:当平面跟磁场方向不垂直时,穿过该平面的磁通量等于B与它在磁场垂直方向上的投影面积的乘积.即Ф=B・Ssinθ,(θ为平面与磁场方向之间的夹角)(如图所示)
引导:观察电磁感应现象,分析产生感电流的条件
过渡:闭合电路的一部分导体切割磁感线时,穿过电路的磁感线条数发生变化.如果导体和磁场不发生相对运动,而让穿过闭合电路的磁场发生变化,会不会在电路中产生电流呢?
在观察实验现象的基础上,引导学生分析上述现象的物理过程:因为电流所激发的磁场的磁感应强度B总是正比于电流强度I,即B∝I.电路的闭合或断开控制了电流从无到有或从有到无的变化;变阻器是通过改变电阻来改变电流的大小的,电流的变化必将引起闭合电路磁场的变化,穿过闭合电路的磁感线条数的变化--磁通量发生变化,闭合电路中产生电流.课前预习
复习初中的中切割磁感线知识,搜集法拉第的生平资料
同学回答:磁感应强度
实验1:
导体不动;
导体向上、向下运动;
导体向左或向右运动.
引导学生观察实验并进行概括.
归纳:闭合电路的一部分导体做切割磁感线的运动时,电路中就有电流产生.
用计算机模拟”切割磁感线“的运动.(看课件产生条件部分)
理解”导体做切割磁感线运动“的含义:切割磁感线的运动,就是导体运动速度的方向和磁感线方向不平行.
问:导体不动,磁场动,会不会在电路中产生电流呢?
实验2:
用计算机模拟”条形磁铁插入、拔出螺线管.(看课件产生条件部分)
注意:条形磁铁插入、拔出时,弯曲的磁感线被切割,电路中有感应电流.
引导学生观察实验并进行概括:无论是导体运动,还是磁场运动,只要导体和磁场之间发生切割磁感线的相对运动,闭合电路中就有电流产生.
教师活动预设学生活动预计课堂情况随笔
用计算机模拟电路中S断开、闭合,滑动变阻器滑动时,穿过闭合电路磁场变化情况:(看课件产生条件部分)
不论是导体做切割磁感线的运动,还是磁场发生变化,实质上都是引起穿过闭合电路的磁通量发生变化.
3.电磁感应现象中能量的转化
师生一起分析:电磁感应的本质是其他形式的能量和电能的转化过程。
(三)课堂小结
产生感应电流的条件是穿过闭合电路的磁通量发生变化.这里关键要注意“闭合”与“变化”两词.就是说在闭合电路中有磁通量穿过但不变化,即使磁场很强,磁通量很大,也不会产生感应电流.当然电路不闭合,电流也不可能产生.
(四)布置作业
1.阅读194页阅读材料.
2.将练习一(1)、(2)做在作业上.
3.课下完成其他题目.
综上所述,总结出:
1.不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生.这种利用磁场产生电流的现象叫电磁感应,产生的电流叫感应电流.
2.产生感应电流的条件.
(1)电路必须闭合;
(2)磁通量发生变化.
引导学生分析磁通量发生变化的因素:
由Ф=B・Ssinθ可知:当
①磁感应强度B发生变化;
②线圈的面积S发生变化;
③磁感应强度B与面积S之间的夹角θ发生变化.这三种情况都可以引起磁通量发生变化.
举例
(1)闭合电路的一部分导体切割磁感线:
(2)磁场不变,闭合电路的面积变化:
(3)线圈面积不变,线圈在不均匀磁场中运动;
(4)线圈面积不变,磁场不断变化:
结论:不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生。这种利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。
作业情况反馈
学生对整个线圈在匀强中运动时是否有感应电流的判断题目出错率比较高,说明学生对感应电流的产生条件____磁通量变化,还不十分理解.
教育教学反思及后记
磁通量部分原想让同学通过自学掌握磁通量的概念,而讲解重点放在磁通量变化大,可是二(4)班的学生课堂自学习惯不好,所以对整个课堂的教学影响较大,有几个关键点还没完全讲透,就到了下课时间了。
篇15:高二物理教案
一、教材分析
磁场的概念比较抽象,应对几种常见的磁场使学生加以了解认识,学好本节内容对后面的磁场力的分析至关重要。
二、教学目标
(一)知识与技能
1.知道什么叫磁感线。
2.知道几种常见的磁场(条形、蹄形,直线电流、环形电流、通电螺线管)及磁感线分布的情况
3.会用安培定则判断直线电流、环形电流和通电螺线管的磁场方向。
4.知道安培分子电流假说,并能解释有关现象
5.理解匀强磁场的概念,明确两种情形的匀强磁场
6.理解磁通量的概念并能进行有关计算
(二)过程与方法
通过实验和学生动手(运用安培定则)、类比的方法加深对本节基础知识的认识。
(三)情感态度与价值观
1.进一步培养学生的实验观察、分析的能力.
2.培养学生的空间想象能力.
三、教学重点难点
1.会用安培定则判定直线电流、环形电流及通电螺线管的磁场方向.
2.正确理解磁通量的概念并能进行有关计算
四、学情分析
磁场概念比较抽象,学生对此难以理解,但前面已经学习过了电场,可采用类比的方法引导学生学习。
五、教学方法
实验演示法,讲授法
六、课前准备:
演示磁感线用的磁铁及铁屑,演示用幻灯片
七、课时安排:
1课时
八、教学过程:
(一)预习检查、总结疑惑
(二)情景引入、展示目标
要点:磁感应强度B的大小和方向。
[启发学生思考]电场可以用电场线形象地描述,磁场可以用什么来描述呢?
[学生答]磁场可以用磁感线形象地描述.----- 引入新课
(老师)类比电场线可以很好地描述电场强度的大小和方向,同样,也可以用磁感线来描述磁感应强度的大小和方向
(三)合作探究、精讲点播
【板书】1.磁感线
(1)磁感线的定义
在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致,这样的曲线叫做磁感线。
(2)特点:
A、磁感线是闭合曲线,磁铁外部的磁感线是从北极出来,回到磁铁的南极,内部是从南极到北极.
B、每条磁感线都是闭合曲线,任意两条磁感线不相交。
C、磁感线上每一点的切线方向都表示该点的磁场方向。
D、磁感线的疏密程度表示磁感应强度的大小
【演示】用铁屑模拟磁感线的形状,加深对磁感线的认识。同时与电场线加以类比。
【注意】①磁场中并没有磁感线客观存在,而是人们为了研究问题的方便而假想的。
②区别电场线和磁感线的不同之处:电场线是不闭合的,而磁感线则是闭合曲线。
2.几种常见的磁场
【演示】
①用铁屑模拟磁感线的演示实验,使学生直观地明确条形磁铁、蹄形磁铁、通电直导线、通电环形电流、通电螺线管以及地磁场(简化为一个大的条形磁铁)各自的磁感线的分布情况(磁感线的走向及疏密分布)。
②用投影片逐一展示:条形磁铁、蹄形磁铁、通电直导线、通电环形电流、通电螺线管以及地磁场(简化为一个大的条形磁铁)。
(1)条形、蹄形磁铁,同名、异名磁极的磁场周围磁感线的分布情况
(2)电流的磁场与安培定则
①直线电流周围的磁场
在引导学生分析归纳的基础上得出
a直线电流周围的磁感线:是一些以导线上各点为圆心的同心圆,这些同心圆都在跟导线垂直的平面上.
b直线电流的方向和磁感线方向之间的关系可用安培定则(也叫右手螺旋定则)来判定:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向.
②环形电流的磁场
a环形电流磁场的磁感线:是一些围绕环形导线的闭合曲线,在环形导线的中心轴线上,磁感线和环形导线的平面垂直。
[教师引导学生得]
b环形电流的方向跟中心轴线上的磁感线方向之间的关系也可以用安培定则来判定:让右手弯曲的四指和和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向.
③通电螺线管的磁场.
a通电螺线管磁场的磁感线:和条形磁铁外部的磁感线相似,一端相当于南极,一端相当于北极;内部的磁感线和螺线管的轴线平行,方向由南极指向北极,并和外部的磁感线连接,形成一些环绕电流的闭合曲线(图5)
b通电螺线管的电流方向和它的磁感线方向之间的关系,也可用安培定则来判定:用右手握住螺线管,让弯曲四指所指的方向和电流的方向一致,则大拇指所指的方向就是螺线管的北极(螺线管内部磁感线的方向).
③电流磁场(和天然磁铁相比)的特点:磁场的有无可由通断电来控制;磁场的极性可以由电流方向变换;磁场的强弱可由电流的大小来控制。
【说明】由于后面的安培力、洛伦兹力、电磁感应与磁感应强度密切相关,几种常见磁场的磁感线的分布是一个非常基本的内容,不掌握好,对后面的学习有很大影响。
3.安培分子电流假说
(1)安培分子电流假说
对分子电流,结合环形电流产生的磁场的知识及安培定则,以便学生更容易理解它的两侧相当于两个磁极,这句话;并应强调这两个磁极跟分子电流不可分割的联系在一起,以便使他们了解磁极为什么不能以单独的N极或S极存在的道理。
(2)安培假说能够解释的一些问题
可以用回形针、酒精灯、条形磁铁、充磁机做好磁化和退磁的演示实验,加深学生的印象。举生活中的例子说明,比如磁卡不能与磁铁放在一起等等。
【说明】假说,是用来说明某种现象但未经实践证实的命题。在物理定律和理论的建立过程中,假说,常常起着很重要的作用,它是在一定的观察、实验的基础上概括和抽象出来的。安培分子电流的假说就是在奥斯特的实验的启发下,经过思维发展而产生出来的。
(3)磁现象的电本质:磁铁和电流的磁场本质上都是运动电荷产生的.
4.匀强磁场
(1)匀强磁场:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫匀强磁场。匀强磁场的磁感线是一些间隔相同的平行直线。
(2)两种情形的匀强磁场:即距离很近的两个异名磁极之间除边缘部分以外的磁场;相隔一定距离的两个平行线圈(亥姆霍兹线圈)通电时,其中间区域的磁场P87图3.3-7,图3.3-8。
5.磁通量
(1)定义: 磁感应强度B与线圈面积S的乘积,叫穿过这个面的磁通量(是重要的基本概念)。
(2)表达式:=BS
【注意】①对于磁通量的计算要注意条件,即B是匀强磁场或可视为匀强磁场的磁感应强度,S是线圈面积在与磁场方向垂直的平面上的投影面积。
②磁通量是标量,但有正、负之分,可举特例说明。
(3)单位:韦伯,简称韦,符号Wb 1Wb = 1Tm2
(4)磁感应强度的另一种定义(磁通密度):即B =/S
上式表示磁感应强度等于穿过单位面积的磁通量,并且用Wb/m2做单位(磁感应强度的另一种单位)。所以:1T = 1 Wb/m2 = 1N/Am
(三)小结:对本节各知识点做简要的小结。
(四)反思总结、当堂检测
1.如图所示,放在通电螺线管内部中间处的小磁针,静止时N极指向右.试判定电源的正负极.
解析:小磁针N极的指向即为该处的磁场方向,所以在螺线管内部磁感线方向由ab,根据安培定则可判定电流由c端流出,由d端流入,故c端为电源的正极,d端为负极.
注意:不要错误地认为螺线管b端吸引小磁针的N极,从而判定b端相当于条形磁铁的南极,关键是要分清螺线管内、外部磁感线的分布.
2.如图所示,当线圈中通以电流时,小磁针的北极指向读者.学生确定电流方向.
答案:电流方向为逆时针方向.
(五)发导学案、布置作业
九、板书设计
磁感线:人为画出,可形象描述磁场
几种常见的磁场:安培定则:让右手弯曲的四指与环形电流的方向一致,伸直的拇指所指的方向就是环形导线轴线上磁感线的方向。
匀强磁场:磁场中各处电场强度大小相等方向相同。其磁感线是一些间隔均匀的平行直线。
磁通量:B与S的乘积,单位是韦伯,也叫磁通密度。
十、教学反思
本节内容与本章第一节内容联系较大可先复习第一节知识后进入新课的学习,并在学习过程中加入对应习题。注重演示如演示磁感线用的磁铁及铁屑,演示用幻灯片等使学生具有形象感。
篇16:高二物理教案
【教学目标】
知识与技能
1.知道曲线运动的方向,理解曲线运动的性质
2.知道曲线运动的条件,会确定轨迹弯曲方向与受力方向的关系过程与方法
1.体验曲线运动与直线运动的区别
2.体验曲线运动是变速运动及它的速度方向的变化
情感态度与价值观
能领会曲线运动的奇妙与和谐,培养对科学的好奇心和求知欲
【教学重点】
1.什么是曲线运动
2.物体做曲线运动方向的判定3.物体做曲线运动的条件
【教学难点】
物体做曲线运动的条件
【教学课时】
1课时
【探究学习】
1、曲线运动:__________________________________________________________2、曲线运动速度的方向:
质点在某一点的速度,沿曲线在这一点的方向。3、曲线运动的条件:
(1)时,物体做曲线运动。(2)运动速度方向与加速度的方向共线时,运动轨迹是___________
(3)运动速度方向与加速度的方向不共线,且合力为定值,运动为_________运动。(4)运动速度方向与加速度的方向不共线,且合力不为定值,运动为___________运动。4、曲线运动的性质:
(1)曲线运动中运动的方向时刻_______(变、不变),质点在某一时刻(某一点)的速度方向是沿__________________________________________,并指向运动轨迹凹下的一侧。
(2)曲线运动一定是________运动,一定具有_________。
【课堂实录】
【引入新课】
生活中有很多运动情况,我们学习过各种直线运动,包括匀速直线运动,匀变速直线运动等,我们知道这几种运动的共同特点是物体运动方向不变。下面我们就来欣赏几组图片中的物体有什么特点(展示图片)
再看两个演示
第一,自由释放一只较小的粉笔头
第二,平行抛出一只相同大小的粉笔头
两只粉笔头的运动情况有什么不同?学生交流讨论。
结论:前者是直线运动,后者是曲线运动
在实际生活普遍发生的是曲线运动,那么什么是曲线运动?本节课我们就来学习这个问题。新课讲解
一、曲线运动
1.定义:运动的轨迹是曲线的运动叫做曲线运动。
2.举出曲线运动在生活中的实例。
问题:曲线运动中速度的方向是时刻改变的,怎样确定做曲线运动的物体在任意时刻速度的方向呢?
引出下一问题。
二、曲线运动速度的方向
看图片:撑开带有水滴的雨伞绕柄旋转。
问题:水滴沿什么方向飞出?学生思考
结论:雨滴沿飞出时在那点的切线方向飞出。
如果球直线上的某处A点的瞬时速度,可在离A点不远处取一B点,求AB点的平均速度来近似表示A点的瞬时速度,时间取得越短,这种近似越精确,如时间趋近于零,那么AB见的平均速度即为A点的瞬时速度。
结论:质点在某一点的速度方向,沿曲线在这一点的切线方向。三、物体做曲线运动的条件
实验1:在光滑的水平面上具有某一初速度的小球,在不受外力作用时将如何运动?学生实验
结论:做匀速直线运动。
实验2:在光滑的水平面上具有某一初速度的小球,在运动方向的正前方或正后方放一条形
磁铁,小球将如何运动?学生实验
结论:小球讲做加速直线运动或者减速直线运动。
实验3:在光滑的水平面上具有某一初速度的小球,在运动方向一侧放一条形磁铁,小球将
如何运动?学生实验
结论:小球将改变轨迹而做曲线运动。
总结论:曲线运动的条件是,
当物体所受合力的方向跟物体
运动的方向不在同一条直线时,物体就做曲线运动。
四、曲线运动的性质
问题:曲线运动是匀速运动还是变速运动学生思考讨论问题引导:
速度是(矢量、标量),所以只要速度方向变化,速度矢量就发生了,也就具有,因此曲线运动是。结论:曲线运动是变速运动。
【课堂训练】
例题1、已知物体运动的初速度v的方向及受恒力的方向如图所示,则图中可能正确的运动
例题2、一个质点受到两个互成锐角的F1和F2的作用,有静止开始运动,若运动中保持力的方向不变,但F1突然增大到F1+F,则此质点以后做_______________________解析:
例题3、一个物体在光滑的水平面上以v做曲线运动,已知运动过程中只受一个恒力作用,
运动轨迹如图所示,则,自M到N的过程速度大小的变化为________________________请做图分析:
【课堂小结】
1.曲线运动是变速运动,及速度的有可能变化,速度的方向一定变化。
2.当物体所受合力的方向跟物体运动的方向不在同一条直线时,物体就做曲线运动,所
以物体的加速度方向也跟速度方向不在同一直线上。
【板书设计】
第一节抛体运动
1、曲线运动
定义:运动的轨迹是曲线的运动叫做曲线运动。2、曲线运动速度的方向
质点在某一点的速度,沿曲线在这一点的切线方向3、曲线运动的条件
当物体所受合力的方向跟物体运动的方向不在同一条直线时,物体就做曲线运动。4、曲线运动的性质
曲线运动过程中,速度方向始终在变化,因此曲线运动是变速运动。
【训练答案】
例1、B例2、匀变速曲线运动例3、自M到N速度变大(因为速度与力的夹角为锐角。
篇17:高二物理教案
一、教学目标
1、知识目标:
①知道直线上机械波的形成过程
②知道什么是横波,波峰和波谷
③知道什么是纵波,密部和疏部
④知道“机械振动在介质中传播,形成机械波”,知道波在传播运动形式的同时也传递了能量
2、能力目标:
①培养学生进行科学探索的能力
②培养学生观察、分析和归纳的能力
③培养学生的空间想象能力和思维能力
二、教学重点、难点分析
机械波的形成过程及传播规律是本节课的重点,也是本节课的难点。
三、教学方法
实验探索和计算机辅助教学
四、教具
丝带、波动演示箱、水平悬挂的长弹簧、音叉
五、教学过程
(一)引入新课
[演示]抖动丝带的一端,产生一列凹凸相间的波在丝带上传播(激发兴趣,引出课题)
在这个简单的例子中,我们接触到一种广泛存在的运动形式--波动,请同学们再举出几个有关波的例子。(学生举例,活跃气氛;让学生在大量生活实例中感触波的存在,增强感性认识。)
学生会列举水波、声波、无线电波、光波。教师启发,大家听说过地震吗?学生会想到地震波。
水波、声波、地震波都是机械波,无线电波、光波都是电磁波。这一章我们学习机械波的知识,以后还会学习电磁波的知识。
(二)进行新课
现在学习第一节,波的形成和传播。
【板书】一、波的形成和传播
[演示]拨动水平悬挂的柔软长弹簧一端,产生一列疏密相间的波沿弹簧传播;
[演示]敲击音叉,听到声音,这是声波在空气中传播(指明,虽然眼睛看不到波形,但它客观存在,也是疏密相间的波形)
师生共同分析,得出波产生的条件:①波源,②介质。(为研究波的形成奠定基础)
波是怎样形成的呢?为什么会有不同的波形?波传播的是什么呢?(设置疑问,激发学生的探究欲望)
【板书】实验探索
发放“探索波的形成和传播规律”的实验报告,进行实验探索并完成实验报告。
实验目的:探索波的形成原因和传播规律
实验(一),学生分组实验:每两人一条丝带(60cm左右),观察丝带上凹凸相间的波。
实验步骤:
(1)、将丝带一端用手指按在桌面上,手持另一端沿水平桌面抖动,在丝带上产生一列凹凸相间的波向另一端传播。
(2)、在丝带上每隔大约2~3cm用墨水染上一个点,代表丝带上的质点。重复步骤(1)。观察丝带上的质点依次被带动着振动起来,振动沿丝带传播开去,在丝带上形成凹凸相间的波。
①思考:丝带的一端振动后,为什么后面的质点能被带动着运动起来?_________________如果将丝带剪断,后面的质点还能运动吗?___________
②分析:丝带上凹凸相间的波形是怎样产生的?___________________(可以参阅课本第3页)
③观察丝带上的质点是否随波向远处迁移?__________
实验(二),观察波动演示器上凹凸相间的波:(因器材有限,可以教师操作,引导学生注意观察)
实验步骤:
(1)、逆时针转动摇柄,演示屏上的质点排成一条水平线。(表示各质点都处在平衡位置)
(2)、顺时针转动摇柄,各个质点依次振动起来。(注意观察各个质点振动的先后顺序)
现象:①后面的质点总比前面的质点开始振动的时刻_______,从总体上看形成凹凸相间的波。
②各质点的振动沿________方向,波的传播沿_______方向,质点振动方向与波的传播方向_______。
③质点是否沿波的传播方向迁移?_______
这种波叫做横波,在横波中凸起的最高处叫做波峰,凹下的最低处叫做波谷。
实验(三),观察弹簧上产生的疏密相间的波。
实验步骤:
(1)、拨动水平悬挂的柔软长弹簧一端,产生一列疏密相间的波沿弹簧传播。
(2)、在弹簧上某一位置系一根红布条,代表弹簧上的质点,重复步骤(1)。
①观察::红布条是否随波迁移?________说明了什么?_____________
②分析:弹簧上疏密相间的波形是怎样产生的?____________________(类比丝带上波产生的分析方法,锻炼学生的知识迁移能力)
实验(四),观察波动演示器上疏密相间的波:
实验步骤:
(1)、逆时针转动摇柄,演示屏上的质点排成一条水平线。
(2)、顺时针转动摇柄,各个质点依次振动起来。
现象:①后面的质点总比前面的质点开始振动的时刻________,从总体上看形成疏密相间的波。
②各质点的振动沿________,波的传播沿_______方向,质点振动方向与波的传播方向_______。
③质点是否沿波的传播方向迁移?_______
这种波叫做纵波,在纵波中最密处叫做密部,最疏处叫做疏部。
分析实验得出结论:
①不论横波还是纵波,介质中各个质点发生振动并不随波迁移。因此,波传播的是_________________,而不是介质本身。
②波传来前,各个质点是静止的,波传来后开始振动,说明他们获得了能量。这个能量是从波源通过前面的质点传来的。因此:波是传递_________的一种方式。
【板书】1、机械振动在介质中的传播,形成机械波。
2、机械波的分类:横波、纵波
3、波传播的是振动形式,是振动的能量。
(三)知识应用:
1、课本中提到地震波既有横波,又有纵波。你能想象在某次地震时,位于震源正上方的建筑物,在纵波和横波分别传来时的振动情况吗?为什么?(从理性认识回到感性认识,实现认识的第二次飞跃)
2、本来是静止的质点,随着波的传来开始振动,有关这一现象的说法正确的有:
A、该现象表明质点获得了能量
B、质点振动的能量是从波源传来的
C、该质点从前面的质点获取能量,同时也将振动的能量向后传递
D、波是传递能量的一种方式
E、如果振源停止振动,在介质中传播的波也立即停止
F、介质质点做的是受迫振动
(四)布置作业:
1、书面作业:列举生活中常见的有关机械波的例子(横波、纵波各一例)简述它们是如何形成的。(培养学生观察生活并用所学物理知识解决实际问题的能力和表达能力)
2、动脑作业:发生地震时,从地震源传出的地震波为什么能造成房屋倒塌、人员伤亡的事故?请用本节所学知识加以解释。(学以致用,巩固提高)
篇18:高二物理教案
学习目标:
1、知道是状态参量,什么是平衡态
2、理解热平衡的概念及热平衡定律,体会生活中的热平衡现象。了解热力学温度的应用
3、理解温度的意义
4、知道常见温度计的构造,会使用常见的温度计
5、掌握温度的定义,知道什么是温标、热力学温标,以及热力学温度的表示。理解摄氏温度与热力学温度的转换关系。
重点难点: 热平衡定律又叫热力学第零定律是本节的重点
学习方法: 自主学习,合作完成、教师点拨
学习过程:
【导读与导思】仔细反复研读教材初步掌握本节内容,完成下列任务
1、状态参量:在研究系统的各种性质(包括几何性质、力学性质、热学性质、电磁性质等等)时需要用到一些物理量,例如,用体积描述它的几何性质,用压强描述力学性质,用温度描述热学性质,等等。这些 ,叫做系统的状态参量。
2、平衡态与非平衡态 (可以举例说明什么是平衡态与非平衡态)
【补充说明】
①在外界影响下,系统也可以处于一种宏观性质不随时间变化的状态,但这不是平衡态。比如:一根长铁丝,一端插入1000C的沸水中,另一端放在00C恒温源中,经过足够长时间,温度随铁丝有一定的分布,而且不随时间变化,这种状态不是平衡态,只是一种稳定状态,因为存在外界的影响,当撤去外界影响,系统各部分的状态参量就会变化。
②热力学系统的平衡态是一种动态平衡,组成系统的分子仍在做无规则运动,只是分子运动的平均效果不随时间变化,表现为系统的宏观性质不随时间变化。而力学中的平衡是指物体的运动状态处于静止或匀速直线运动
③平衡态是一种理想情况,因为任何系统完全不受外界影响是不可能的。系统处于平衡态时,由于涨落,仍可能发生偏离平衡状态的微小变化。
3、两个系统达到了热平衡是指
【说明】热平衡概念不仅适用于相互作用的系统,也适用于两个原来没有发生过作用的系统。因此可以说,只要两个系统在接触时他们的状态不发生变化,我们就说这两个系统原来是
4、热平衡定律又叫 ,其内容表述为:
5、温度的概念:
6、决定一个系统与另一个系统是否达到热平衡状态的物理量是 ;一切达到热平衡的物体都具有相同的 。实验室常用温度计的原理是:
例如:在一个绝热的系统中,有一块烧烫的铁块,还有一些较冷的沙土。使两者接触,铁块会慢慢变冷,沙土会慢慢变热,后来她们变得一样“热”了,就不再变了。这种“冷热程度相同”就是他们的“共同性质”。这个“共同性质”的物理量即为 。
7、温度计与温标:用来测温的仪器, 第一个制造了温度计后,温度就不再是一个主观感觉,而形成了一个客观的物理量。到目前,形形色色的温度计已经应用在各种场合。如果要想定量地描述温度,就必须有一套方法,这套方法就是 。也就是说,为了表示出温度的数值,对温度零点、分度方法所做的规定,就是温标。
【补充说明】生活中常见的温标有摄氏温标、华氏温标等。不同的温标都包含三个要素:第一,选择某种具有测温属性的测温物质;第二,了解测温物质随温度变化的函数关系;第三,确定温度零点和分度方法。
8、热力学温标表示的温度叫做 ,它是国际单位制中七个基本物理量之一,用符号
表示,单位是 ,符号是 。摄氏温度与热力学温度的关系是
【典例1】关于热力学温标的正确说法是( )
A、热力学温标是一种更为科学的温标.
B、热力学温标的零度为—273.150C。叫绝对零度.
C、气体温度趋近于绝对零度时期体积为零
D、在绝对零度附近气体已经液化.
【导练1】以下说法正确的是( )
A、绝对零度永远达不到. B、现代技术可以达到绝对零度
C、物体的绝对零度是—273K D、物体的绝对零度是—273.150C.
【典例2】关于热力学温度下列说法正确的是( )
A、-330C=240.15K.B、温度变化10C,也就是温度变化1K.
C、摄氏温度与热力学温度都可能取负值D、温度由t0C升至2t0C,对应的热力学温度升高了273.15K+t
【导练2】关于热力学温标和摄氏温标,下列说法正确的是( )
A、热力学温标中每1K与摄氏温标中每10C大小相等.
B、热力学温标中升高1K大于摄氏温度升高10C
C、热力学温标中升高1K等于摄氏温度升高10C.
D、某物体摄氏温度100C,即热力学温度10K
【典例3】“在测定某金属块的比热容时,先把质量已知的金属块放在沸水中加热,经过一段时间后把它迅速放进质量、温度均已知的水中,并用温度计测量水的温度,根据实验数据就可以计算出金属块的比热容”。以上叙述中,哪个地方涉及了“平衡态”和“热平衡”的概念
【点拨】金属块在沸水中加热一段时间后,二者就达到了“热平衡”,此时的沸水和金属块就处于“平衡态”;将金属块放入质量、温度已知的水之前,金属块和水处于各自的“平衡态”,当放入金属块后水温不再上升时,金属块和水均处于“热平衡”,此时温度计的读数就是水和金属块的共同温度。
篇19:高二物理教案
教学目标
知识目标
1、理解磁感应强度B的定义及单位.
2、知道用磁感线的疏密可以形象直观地反映磁感应强度的大小.
3、知道什么叫匀强磁场,知道匀强磁场的磁感线的分布情况.
4、知道什么是安培力,知道电流方向与磁场方向平行时,电流受的安培力为零;电流方向与磁场方向垂直时,电流受安培力的大小.
5、会用左手定则熟练地判定安培力的方向.
能力目标
1、通过演示磁场对电流作用的实验,培养学生总结归纳物理规律的能力.
2、通过学习左手定则,理解磁场方向、电流方向和安培力方向三者之间的关系,培养学生空间想象能力.
情感目标
通过对安培定则的学习,使得学生了解科学的发现不仅需要勤奋的努力,还需要严谨细密的科学态度.
教学建议
教材分析
关于安培力这一重要的内容,需要强调:
1、安培力的使用条件:磁场均匀,电流方向与磁场方向垂直。
2、电流方向与磁场方向平行时,安培力具有最小值。电流方向与磁场方向垂直时,安培力具有最大值。
教法建议
由于前面我们已经学习过电场的有关知识,讲解时可以将磁场和电场进行类比,以加深学生对磁场的有关知识的理解。例如:电场和磁场相互对比,电场线与磁感线相互对比,磁感应强度与电场强度进行对比等等。
在上一节的基础上,启发学生回忆电场强度的定义,对比说明引入磁场强度的定义的思路是通过磁场对电流的作用力的研究得出的。为了让学生更好的理解磁场,可以在实验现象的基础上引导学生进行讨论。
教学设计方案
安培力磁感应强度
一、素质教育目标
(一)知识教学点
1 、理解磁感应强度B的定义及单位.
2 、知道用磁感线的疏密可以形象直观地反映磁感应强度的大小.
3 、知道什么叫匀强磁场,知道匀强磁场的磁感线的分布情况.
4 、知道什么是安培力,知道电流方向与磁场方向平行时,电流受的安培力为零;电流方向与磁场方向垂直时,电流受安培力的大小
5 、会用左手定则熟练地判定安培力的方向.
(二)能力训练点
1 、通过演示磁场对电流的作用的实验,培养学生利用控制变量法总结归纳物理规律的能力.
2 、通过学习左手定则,理解磁场方向、电流方向和安培力方向三者之间的关系,培养学生空间想像能力.
(三)德育渗透点
通过阅读材料介绍奥斯特发现电流磁效应,说明科学家之所以能取得辉煌的成就,除了本身所具有的聪明才智外,刻苦勤奋地学习和工作,善于捕捉稍纵即逝的灵感更为重要,鼓励和激发学生从现在开始更加发奋地学习,将来为国家做贡献.
(四)美育渗透点
通过介绍物理学家安培取得辉煌成就的原因是靠勤奋自学、刻苦钻研的顽强意志,让学生感受物理学家们的人格美、情操美.
二、学法引导
1 、教师通过演示实验法直观教学,决定安培力大小的因素,通过启发讲解,帮助学生归纳总结公式
及B的定义式.结合练习法使学生掌握左手定则使用.
2 、学生认真观察实验,在教师启发的指导下总结规律,积极动手动脑理解公式,掌握左手定则的应用.
三、重点·难点·疑点及解决办法
1 、重点
(1)理解磁场对电流的作用力大小的决定因素,掌握电流与磁场垂直时,安培力大小为:
(2)掌握左手定则.
2 、难点
对左手定则的理解.
3 、疑点
磁场方向、电流方向和安培力方向三者之间的空间关系.
4 、解决办法
以演示实验为突破口,直观地引导学生掌握电流在磁场中所受安培力大小的决定因素;反复地借助实验,来理解左手定则,建立磁场方向、电流方向和安培力方向三者关系的正确图景.
四、课时安排
1课时
五、教具学具准备
铁架台、三个相同的蹄形磁铁、电源、滑动变阻器、电键、导线.
六、师生互动活动设计
教师先通过实验,学生观察分析、讨论、总结出安培力公式,再引入磁感强度B的定义式,通过讲解类比电场强度,启发学生理解公式
的意义,借助墙角(或桌角)帮助学生建立三维坐标空间,理解掌握左手定同.
七、教学步骤
(一)明确目标
(略)
(二)整体感知
本节教学是在上一节学习了磁场的概念及方向性的基础上,进一步认识磁场的强弱性质,根据磁场力的性质用定义法定义B描述磁场的强弱,用磁感线形象地反映磁场的强弱,同时利用定义式来计算安培力的大小,再用左手定则来确定磁场方向、电流方向和安培力的方向.
(三)重点、难点的学习与目标完成过程
1 、磁场对电流的作用
用条形磁铁可以在一定的距离内吸起较小质量的铁块,巨大的电磁铁却能吸起成吨的钢块,表明磁场有强有弱,如何表示磁场的强弱呢?我们利用磁场对电流的作用力——安培力来研究磁场的强弱.
2 、决定安培力大小的因素有哪些?
利用演示实验装置,研究安培力大小与哪些因素有关
(1)与电流的大小有关.
保持导线在磁铁中所处的位置及与磁场方向不变这两个条件下,通过移动滑动变阻器触头改变导线中电流的大小.
请学生观察实验现象.导线摆动的角度大小随电流的改变而改变,电流大,摆角大;电流小,摆角小.
实验结论:垂直于磁场方向的通电直导线,受到磁场的作用力的大小眼导线中电流的大小有关,电流大,作用力大;电流小,作用力也小.
(2)与通电导线在磁场中的长度有关.
保持导线在磁铁中所处的位置及方向不变,电流大小也不变,改变通电电流部分的长度.学生观察实验现象.导线摆动的角度大小随通电导线长度而改变,导线长、摆角大;导线短,摆角小.
实验结论:垂直于磁场方向的通电直导线,受到的磁场的作用力的大小限通电导线在磁场中的长度有关,导线长、作用力大;导线短,作用力小.
(3)与导线在磁场中的放置方向有关.
保持电流的大小及通电导线的长度不变,改变导线与磁场方向的夹角,当夹角为0 °时,导线不动,即电流与磁场方向平行时不受安培力作用;当夹角增大到90 °的过程中,导线摆角不断增大,即电流与磁场方向垂直时,所受安培力最大;不平行也不垂直时,安培力大小介于和最大值之间.
3 、磁感应强度
总结归纳以上实验现象,用L表示通电导线长度,I表示电流,保持电流和磁场方向垂直,通电导线所受的安培力大小FIL
用B表示这一比值,有B的物理意义为:通电导线垂直置于磁场同一位置,B值保持不变;若改变通电导线的位置,B值随之改变.表明B值的大小是由磁场本身的位置决定为.对于电流和长度相同的导线,放置在B值大的位置受的安培力F也大,表明磁场强.放在B值小的位置受的安培力F也小,表明磁场弱
4 、安培力的大小和方向.
根据磁感应强度的定义式,可得通电导线垂直磁场方向放置时所受的安培力大小为:
举例计算安培力的大小.
安培力的方向如何呢?还过前面的演示实验现象可知,通电导线在磁场中受到的安培力方向跟导线中的电流方向、磁场方向都有关系.人们通过大量的实验研究,总结出通电导线受安培力方向和电流方向、磁场方向存在着一个规律——左手定则.
左手定则:伸开左手,使大拇指跟其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流方向,那么,拇指所指的方向,就是通电导线在磁场中的受力方向.
应该注意的是:若电流方向和磁场方向垂直,则磁场力的方向、电流方向、磁场方向三者互相垂直;若电流方向和磁场方向不垂直,则磁场力的方向仍垂直于电流方向,也同时垂直于磁场方向.
(四)总结、扩展
本节课我们学习了磁场对电流的作用——安培力,通过研究安培力的大小,我们定义了反映磁场强弱的物理量——磁感应强度
八、布置作业
九、板书设计
【高二物理教案精选】相关文章:
1.高二物理教案
3.物理教案
4.物理教案-压强
5.初二物理教案
6.高一物理教案
7.八年级物理教案
9.比热容物理教案
10.高中物理教案






文档为doc格式