质数合数教学设计
“Irinanana”通过精心收集,向本站投稿了14篇质数合数教学设计,下面是小编为大家整理后的质数合数教学设计,仅供大家参考借鉴,希望大家喜欢!
篇1:质数和合数教学设计
教学目标:
①使学生掌握质数和合数的意义,能正确判断一个常见数是质数还是合数。
②知道100以内的质数,熟悉20以内的质数。
③培养学生自主探索、独立思考、合作交流的能力。
④让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
教学重点:质数和合数的意义。
教学难点:正确判断一个常见数是质数还是合数。
教学过程:
一、导入(课件出示)
1.在1——20的各自然数中,奇数有哪些?偶数有哪些?
2.想一想:自然数分成奇数和偶数,是按什么标准分的?自然数分几类?
师:自然数还有一种新的分类方法,今天就来学习这种分类方法。
二、出示预习提纲:
自学内容P23-24例1、做一做,P25—26的T1—5
思考:
1、按要求填书中表:
从上面的表格中的数据有什么特点?
2、什么叫质数和合数?举例说明。
3、在这个表中找出100以内的全部质数
小组讨论,你发现了什么?
4、把不理解的内容做好标记。
三、汇报展示:
1.学习质数和合数的概念。
预习反馈(1)请写出1~20各数的因数?(根据学生的回答板书)
预习反馈(2)观察:填在书中第23页表格中的数据有什么特点?
(3)学生讨论后归纳分成三类:只有因数1的;只有1和它本身这两个因数的;除了1和本身之外还有其他因数的。)
反馈:只有一个因数的:1
只有1和它本身两个因数的:2,3,5,7,11,13,17,19
有两个以上的因数的:4,6,8,9,10,12,14,15,16,18,20
(4)教学质数和合数的概念。
①自然数只有两个因数的,如:2、3、5、7、11、13、17、19等。这几个数的因数一定是多少?
讲:一个数,如果只有1和它本身两个因数,我们把这样的数叫做质数(或素数)。(板书“质数”)
②4、6、8、9、10、12、14、……这些数的因数与上面的数的因数相比有何不同?
讲:一个数,如果除了1和它本身两个因数外还有别的因数,我们把这样的数叫做合数。(板书“合数”)
注意:1既不是质数,也不是合数。
(5)提问:什么叫质数?什么叫合数?自然数按因数个数来分,可以分几类?
2、质数、合数的判断方法。
(1)我们应该怎样去判断一个数是质数还是合数?(根据因数的个数来判断)
(2)完成P23做一做,判断下列各数中哪些是质数,哪些是合数?(先独立完成,再同桌互查)
(3)提问:你是怎样判断的?(找出每个数的因数的个数)
判断是质数还是合数,是不是把所有的因数都找出来?(不必要,只要发现自然数除了1和本身指望还有其它的因数,不管有几个,它都是合数)
3.出示P24例题1,找出100以内的质数,做一个质数表。
(1)提问:如何很快的制作一张100以内的指数表?
(2)按质数的概念逐个判断?也可以用筛选法。
(3)介绍筛选法:先排除2以外的所有偶数,接着排除3以外的所有3的倍数,再接着排除5以外的.所有5的倍数,最后排除7以外的7的倍数。因为1既不是质数,也不是合数,所以也必须排除,这样剩下的就是100以内的质数。
100以内的质数:(略)
(4)讲:判断一个数是不是质数,除了用质数的定义进行判断外,还可以查质数表,如100以内的质数表。(或者看6的倍数的左右)
四、反馈检测
完成P25题1~5
第3题:质数+质数=10,质数×质数=21,分析:这两个质数一定小于10,10以内的质数有2,3,5,7,通过观察可知,只有3和7。
同样,质数+质数=20,质数×质数=91,只有3+17=20和7+13=20,而积是91的只有7和13。
板书设计
质数和合数
质数(素数):只有1和它本身两个因数。如2、3、5、7
合数:除了1和它本身还有别的因数。如4、6、15、49
附质数和合数检测题:
一、填空。(口答)课件出示
1、最小的自然数是,最小的质数是(),最小的合数是(),最小的奇数是()。
2、20以内的质数有(),20以内的偶数有(),20以内的奇数有()。
3、20以内的数中不是偶数的合数有(),不是奇数的质数有()。
4、在5和25中,()是()的倍数,()是()的约数,()能被()整除。
二、猜一猜:(课件出示)
三、判断题,对的在括号里写“√”,错的写“×”。
(1)任何一个自然数,不是质数就是合数。()
(2)偶数都是合数,奇数都是质数。()
(3)7的倍数都是合数。()
(4)20以内最大的质数乘以10以内最大的奇数,积是171。()
(5)只有两个约数的数,一定是质数。()
(6)两个质数的积,一定是质数。()
(7)2是偶数也是合数。()
(8)1是最小的自然数,也是最小的质数。()
(9)除2以外,所有的偶数都是合数。()
(10)最小的自然数,最小的质数,最小的合数的和是7。()
篇2:质数和合数教学设计
教学内容:质数和合数。
教学过程:
一、创设情境,引入课题。
我们已经学习了求一个数的因数的方法,你能正确求出1――20各数的因数吗?
小组比一比,看谁列得快。教师指名汇报。
二、动手操作,制质数表。
(1)找因数。
观察这些数的因数,如果按因数的个数,你认为可以怎样分类?
动手给20以内的数按因数的个数进行分类,填书P23。
观察黑板上的三类数各有什么特点?
师:只有1和它本身两个因数的数叫做质数(或素数),除了1和它本身还有别的因数的数叫做合数。
结合1――20各数,解释一下什么是质数?什么是合数?[板书概念]
齐读20以内的质数、合数。
问:最小的质数是几?最小的合数是几?
1是质数,还是合数呢?[板书:1既不是质数,也不是合数]
如果把整数按自然数的个数来分类,可以分为几类?哪几类?再次强调:1既不是质数,也不是合数。
要判断一个数是质数还是合数,关键是看什么?
你的学号是质数,还是合数?与同桌说一说,并互相判断对错。
P23做一做。独立练习,全班交流检查。
(2)找质数。
刚才我们已经找出了20以内的质数,那“73”它是不是质数。
要想马上知道73是什么数还真不容易。如果有质数表可查就方便了。这表从哪来呢?
(教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想办法找出100以内的质数,制成质数表?谁来说说自己的想法?(让学生充分发表自己的想法。)
师:对,逐个判断比较麻烦,是否有什么方法可以很快地找出来?用排除法可以吗?
因为质数只有1和它本身两个因数,那么质数的倍数就都是合数,只要在数字表上依次划出质数的倍数,剩下的就是质数了。
学生根据教师的指导,在教材第24页用排除法动手制作100以内的质数表,然后再在全班交流。
一起把100以内的质数读一读。
附:100以内质数顺口溜
二、三、五、七、一十一
十三、十七、一十九
二三九、三一七
五三九、六一七
四一三七、七一三九
八三、八九、九十七
三、练习巩固:
完成练习四第1、2题。
四、课题小结:
这节课你在激烈的讨论中有什么收获?
篇3:质数和合数教学设计
【教学目标】
一、知识与技能
1.掌握质数和合数的意义。
2.熟记20以内质数,能准确地辩识一个常见自然数是质数还是合数。
3.通过探究质数和合数的意义,培养学生的探究意识和能力。
4.能对现实生活中箱装饮料罐的数字信息作出合理解释。
二、情感、态度与价值观
1.通过实际生活中箱装牛奶的排列方式,感知生活中有数学。
2.在形式多样的练习中,激发学生的学习兴趣。
【教具学具】
CAI课件、题单1张。
【教学过程】
一、生活实例引入
1.观察生活:同学们,我们所喝的液体牛奶通常都是排在长方体的纸箱中。
请你们猜猜看:通常一箱牛奶的总数量会是些什么数?
师:真是这样的吗?老师这里带来了一些箱装的牛奶,大家一起来看一看:每箱共有多少盒?是怎样排列的?用算式表示。
教师根据学生的回答板书在黑板的右侧:
24=4×6
15=3×5
12=3×4
2.实际数量的多种排列方法,分析可行性:
这些数量装在一个长方体纸箱中,还可以怎样排?(学生说出尽可能多的排列方法,老师补充前面板书。)板书:
24=4×6=3×8=2×12=1×24
15=3×5=1×15
12=3×4=2×6=1×12
提问:你觉得哪种排列方式,实际生活中采用的可能性最小?(学生回答后教师在黑板上勾一勾。)
为什么?(不便携带……)
3.比较质疑,引入新课:
现在老师这儿有13盒牛奶,如果将它们排在一个长方体纸箱中,要求每排数量相等,可以有哪些排法?17呢?19呢?(学生思考,同桌说一说,教师板书在黑板左侧)板书:
13=1×13
17=1×17
19=1×19
你还能举出一些这样的数吗?
据学生回答板书,同时说明:像的这样的数还有很多。
二、探究新知
(一)探究质数意义。
1.想一想:为什么右边的数量可以排成多行多列,而左边的数量不能排成多行多列呢?
四人小组讨论(提示:跟这些数的因数的个数有关。仔细观察左边这些数的因数,你发现了什么?)
汇报:(鼓励学生用自己的语言描述)
CAI整理揭示:只有1和它本身两个因数的数叫质数。
强调:质数只有两个因数。
如:13只有1和13两个因数,17只有1和17两个因数:19也只有1和19两个因数;……所以13、17、19……都最质数。
2.再举几个质数,并说明理由。
3.小组合作:找出自然数1―20中有哪些数是质数?
4.学生汇报并说说是怎么找出来的。(学生汇报后CAI出示)
(二)探究合数。
1.用质数判断合数:右边这些数也是质数吗?(不是)为什么?
除了1和它本身还有别的因数;它们至少有几个因数?(3个)
CAI揭示:除了1和它本身,还有别的因数的数,叫合数。
强调:合数至少有3个因数。
2.请你再举几个合数,并说明理由。
3.巩固意义:你觉得判断一个数是质数还是合数的关键是什么?(因数的个数。)
4.谜底揭晓:日常生活中一箱饮料的总数量通常是些什么数?(板书:合数)很少采用什么数?(板书:质数,揭示课题。)
5.小组合作:找出自然数1―20中的合数。
6.学生汇报,老师用CAI出示。
(三)通过观察自然数1―20中的质数和合数,引出“1”:
1.刚才我们用找因数个数的方法,找到了自然数1―20中的质数有多少个?(8个)合数有多少个?(11个)一共有多少个?(19个)还漏掉了哪个数呢?(1)
2.提问:1是质数吗?是合数吗?为什么?
学生充分发表意见后CAI揭示:1只有一个因数,所以它既不是质数,也不是合数。
(四)指导学生看书,勾画重点句。
三、发展练习:CAI辅助演示指导学生完成题单。
1.是的就在对应的表格中画“√”。
1234567891011121314151617181920
奇数
偶数
质数
合数
2.根据1小题填空
(1)最小的奇数是;
(2)最小的质数是();
(3)最小的合数是();
(4)既是偶数又是质数的只有();
(5)20以内既是奇数又是合数的有()。
3.判断下列说法是否正确。
(1)自然数除了质数以外都是合数。()
篇4:质数合数教学设计
【教材分析】
《质数与合数》是在学生已经掌握了因数和倍数的意义,了解了2、5、3倍数的特征之后学习的又一重要内容,它是学生学习分解质因数,求最大公因数和最小公倍数的基础,在本章教学内容中起着承前启后的重要作用。
【教学背景分析】
五年级的学生已具备一定的观察、分析、理解能力,掌握了一些学习数学的方法。学生对学习充满热情和好奇心,有主动参与的意识,迫切地希望体验探究学习的过程。因此,我根据教学内容选择了探究性的学习方式。通过体验与探究的活动,让学生亲历概念的自我建构过程,培养学生勇于探索的科学精神。
【设计理念】
在《数学新课程标准》中,强调要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程。因此教学中根据儿童的认知规律,创设情境,激发学生的学习兴趣和强烈的'求知欲望,引导学生积极思维,主动获取知识,使学生在自主学习、探索、交流中要学数学,会学数学和乐学数学,力求体现以学生发展为本的指导思想。
【教学目标设计】
1、理解并掌握质数、合数的概念,并能进行正确的判断。
2、通过操作、观察自主学习提出猜想合作、交流验证分类、比较抽象归纳总结巩固提高学习过程,动手操作、观察和概括能力,积极探究的意识得到进一步提高。
3、在体验与探究的活动中,体验数学活动充满着探索与创新,感受数学文化的魅力。
【教学重点】:
理解质数和合数的意义
【教学难点】:
判断一个数是质数还是合数的方法。
【教学过程】:
一、课前谈话:
学号是每位同学在这个班级的数字代号,每个人对自己学号的数字都会有特殊的感情,是吗?谁愿意用学过的知识来介绍自己的学号是个怎样的数呢?
二、引入:
刚才很多同学在介绍学号时很多用到了奇数和偶数的知识,请学号是奇数的同学站起来;哪些人学号是偶数呢? 都站过了吗,可见自然数可以怎样分类?分类依据是什么?
三、探究新知:这节课我们换个角度,通过研究因数进一步来研究自然数,看看是否有新的发现。
1、写因数。每个同学都有自己的学号对不对,那么请你写出自己学号的所有因数,在写之前请一两个同学说说写因数的方法?说完后然后学生现在开始写因数,就写在学号牌上。(要求:写因数时要求完整、工整、有规律。)
2、交流:请112号同学汇报自己学号的所有因数,教师板书。现在请所有同学一起来观察黑板上这些数字的所有因数,看看你发现了什么?
师:按照每个数的因数的个数,(板书:按因数的个数)可以分为哪几种情况?并说说你为什么这样分?
(全班交流) 板书完成:有一个因数:1
有两个因数:2、3、5、7、11、
有两个以上因数:4、6、8、9、10、12
(1)质数
师:先观察只有两个因数的特征,谁能发现:他们的因数有什么特点呢?
(出示:只有1和它本身两个因数)板书
命名:我们给这样的数取名为:质数(或素数)(课件),齐读后特别强调只有两字然后个别读,最后再齐读)(一个数,如果只有1和它本身两个因数,这样的数叫做质数。)
再举出几个质数的例子。并让学生说说为什么是质数。举得完吗?说明了什么?(质数有无数个) 想一想:最小的质数是几?最大的呢?
(2)合数
师:再看4、6、9、10等这一类的数,它们的因数跟质数的因数比较,有什么不同呢?
(板书:除了1和它本身以外,还有别的因数)应强调两个以上或至少有三个因数
命名:我们给这样的数取名为:合数。(板书:合数)(课件)齐读概念
所以质数和合数就是我们这节课所要学的内容(板书:质数和合数)
再举出几个合数的例子,然后问为什么。问:举得完吗?说明了什么?(合数也有无数个) 想一想:最小的合数是几?最大的呢?
(3)1既不是质数也不是合数
(4)分类: 所以按照因数个数的多少,自然数又可以分为哪几类呢?
明确用三分法可以把自然数分为质数和合数以及1三类
13号到27号的同学看看你们手中的因数也就这三类
您现在正在阅读的《质数和合数》教学设计文章内容由收集!《质数和合数》教学设计判断你自己的学号是质数还是合数,悄悄地告诉你的同桌,并告知理由。
(二)动手实践,制作100以内的质数表。
1、51,是质数还是合数?要想马上知道一个数是什么数还真不容易。(过渡)如果有质数表可查就方便了。我们一起制作一个质数表,拿出100以内的数表,想想怎样找出100以内的质数,制成质数表。
2、刚才,我们有些同学接受任务后,有的马上就去找,有人在思考。要是我,我可不及于去找,而是想一想用什么方法去找。说说你们是怎样找的?(把质数留下,其他的数去掉,古代数学家就是用这种筛选的方法制作质数表的。我们都来筛吧!)
3、怎样筛选的更快?同学们自己发现了规律制成了100以内的质数表。你们真了不起!
4、你还有什么发现吗?
三、课堂练习
1.判断题。(对的划,错的划并且说明理由)
(1)所有的奇数都是质数。()
(2)所有的偶数都是合数。()
(3)在1、2、3、4、5中,除了质数以外都是合数。()
(4)1既不是质数也不是合数。()
2.选择题。(把正确答案的序号填在括号内)
(1)自然数中,唯一的偶质数是()。
①1②2③3④4
(2)下列数中,既是奇数又是合数的是()。
①8②9③5④53
3、根据所给提示写电话号码
师:你们想知道我们学校某位老师的电话号码吗?
既不是质数也不是合数()
它的因数只有1和3(w w w.xx j xsj.cn )
10以内最大的奇数()
10以内3的倍数同时又是偶数()
最小的质数()
既是偶数又是质数()
它只能被1和5整除()
最小的既是奇数又是质数的数()
10以内最大的质数()
它的因数只有1和5()
它表示一个物体也没有()
四、课堂小结,激发学生的学习热情。
同学们善于观察、肯于动脑、敢于提问,真是太好了。关于质数与合数的学问还多着呢!你们听说过数学皇冠上的明珠哥德巴赫猜想吗?请看大屏幕:
五、全课总结 你有什么收获?
[
篇5:质数和合数教学设计
教学目标:
使学生理解质数与合数的饿意义,掌握判断质数合数的方法,
教学过程:
一、复习
约数的概念,找约数的方法。
二、引入新课
例1写出下面每一个自然数的全部约数,在根据约数的个数,把这些自然数进行分类。
自然数约数
11
21、2
51、5
91、3、9
111、11
121、2、3、4、6、12
171、17
201、2、4、5、10、20
381、2、19、38
451、3、5、9、15、45
(1)找约数
(2)按照约数的多少进行分类?
(3)讨论:1是什么数?
最小的质数是几?
最小的合数是几?
三、巩固练习
1、练一练
第一题,练习判断一个数是质数还是合数。
分析:怎样去判断一个自然数是质数还是合数
2、试一试
第三题判断下面各题,正确的在括号里打对,不正确的打错。
四、总结归纳
使学生弄清奇数与质数,偶数与合数是不同的概念
五、布置作业
篇6:质数和合数教学设计及评析
教学内容:九年义务教育五年制小学数学质数合数。
教学目标 : 1. 培养学生自主探索、独立思考、合作交流的能力。
2.培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。
3. 理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
教学过程 :
活动一:以新闻引入
活动目的:创设情境,激发学生主动探索的欲望.
活动过程 :
刚才大家提起“歌德巴赫猜想”,贾老师也很感兴趣,而且一直在搜集这方面材料,点击课件, 很巧前一段有这样的报道-----小时候就听说有人把“歌德巴赫猜想”比做数学王冠上的明珠,点击课件,今天竞有人悬赏100万美元求征“歌德巴赫猜想之解” ,歌德巴赫猜想到底是什麽呀?有兴趣看看吗?点击课件
出示:大于4的偶数总能写成两个奇素数之和。
师: 谁来读一下.著名的哥德巴赫猜想.生读.
师:就这样一句话呀。你读懂了吗?你读懂什麽啦?
生:大于4的偶数 能举个例子吗? 6、8、10……
奇数:什麽是奇数?
素数(质数): 什么样的数是质数?
师:哦你们是这样理解的.看来质数与约数有直接关系。你从那知道的?
教学反思: 这样的教学,使学生悬念顿生,兴趣盎然,思维处于欲罢不能的愤悱状态。此时教师巧妙地把握住时机,导入 新课。这样从新闻入手,激发了全体学生的兴趣,使课堂气氛顿时活跃起来.为本节课的顺利实施提供了有效的条件。
活动二: 理解质数合数的意义
活动目的: 让学生自己去经历观察、实验、猜想、证明等数学活动的过程,发展合情推理能力,初步的演绎思维能力及解决问题的能力。
活动过程 :
1、认识质数
.师:看来你们对这个猜想已经初步理解了,我们能试着写一个符合这个猜想的式子吗。
生:8=3+5 3、5是奇数吗?是质数吗?
10=11+3 3、11是奇数吗?是质数吗?
14=7+7 同意吗?为什么?
师:都有兴趣举,拿出本来,看谁举的多。
生:举例。你举了几个.师把最多的式子板书黑板.
师:还有补充吗?
师:我们按照自己对“哥德巴赫猜想”的理解写出了这些式子,是否都符合这个猜想呢?
师:符号右边都是奇数吗?都是质数吗?质数有什么共同特点?
生:除了1和它本身不再有其他约数的数叫质数。
师:能举出一个质数吗?5 是质数,为什麽?17是质数,为什么?
师:都想举拿出本举看谁举得多?四人交流一下。
师:生汇报。这些数都是质数,到底什么是质数。板书:质数
2、认识合数。
.师:9这个数为什么不是质数?我们把这样的数叫什麽数。
生:合数,为什么?
师:谁能再举一个合数。什么是合数?板书:合数.
3、今天我们学习了质数和合数.板书课题:质数 合数有问题吗?
4、判断数字卡片是质数还是合数?
出示:5、9 为什么?
抢答:3、19、49、63、47、39、121、2、1、31、5730……
师:2为什么是质数?1为什么不是质数也不是合数?
教学反思: 教师在引导学生发现判断质数、合数方法的过程中,自始至终都没有以一个“裁判者”的身份出现,而是力求使自己成为学生学习的促进者、参与协商,鼓励和监控学生的讨论和练习过程,但不控制学生的讨论结果。同时教师也把自己当作学习者,与学生一道共同完成学习任务。当时的课堂气氛和谐、民主。收到了良好的效果。
活动三:学生自己选择要研究的问题进行活动。
活动目的:教师要主动把课堂教学活动的主角位置让给学生,把课堂教学活动的时间多分给学生使用,把课堂教学活动的内容多留给学生处理解决,教师做好组织、设计、指导或点拨,主导者要让贤于主体者,采用这一教法,可让学生认识“自我”,感受到“自我”的价值。爱因斯坦说过:“提出一个问题比解决一个问题更重要。”
活动过程 :
1.你还想研究质数合数的那些知识?(学生提出很多)
如:(1)找最大质数.
(2)如何判断一个数是质数还是合数.
(3)自然数中是不是除了质数就是合数……
2.请各小组选一个你们喜欢研究的问题,开始研究吧.
3.汇报研究成果.
教学反思: 教师在课后设计了这样一个环节,你还想研究质数、合数有关的那些知识。这一过程,教师充分让位还权,放手让学生去探究,留足学生探究的时间与空间,关注有差异的学生去发现,去完成自己的学习目标,使每个学生都积极参与“做”数学,能在课上研究的问题就在课上处理,留下的问题让学生向家长、老师、书籍、网络……学习,这样设计已经不只局限于使学生理解、掌握知识,更多关注的是培养学生探究知识能力,着眼学生的可持续发展。体现出学生学习的主体参与意识,此环节的处理,虽然耽误了一些时间, 但我想还是值得的.教师应以学生为本,而不应以备好的教案为本.
活动四:回到开头。
活动目的: 教师本着以人的发展为本的教学理念,着眼于学生的可持续发展.
活动过程 :
1.我们学习了质数和合数,对于哥德巴赫猜想中的奇素数你是怎么理解的?点击课件出示:大于4的偶数总能写成两个奇素数之和。
师:是不是所有一个尽可能大的偶数总能写成两个奇素数之和呢?能证明吗?
师:虽然我们现在还不能证明?但是通过这节课我们对哥德巴赫猜想的理解和我们之间的交流。你们是不是已经感受到了数学王国的神秘。
2.著名科学家牛顿曾说过这样一句话:我之所以取得今天的成绩,是因为我站在巨人肩膀上的缘故。同学们其实你们已经站在巨人肩膀上研究问题啦。这使我坚信,在不久的将来,在座的各位通过不懈的努力,将来肯定会有人摘下这颗数学王冠上的明珠,解开“哥德巴赫猜想。
教学反思:当时学生举手非常踊跃,表现出一种探索的欲望, 敢于探索科学之谜的精神,充分展示出了数学自身的魅力。
六、板书:略。
教学反思:
一 新课程标准中指出;“让学生经历数学知识的形成与应用过程。”数学学习过程的实质是现实世界各种数量关系内化上升为形式化的过程。数学知识本身的特点决定了“数学教育的主要活动是思想实验。” 为此, 数学教师应充当教练的角色,面向全体学生,因材施教,以千差万别的方式练就千差万别的学生,从而实现“人人学有价值的数学”;“人人都能获得必须的数学”;“不同的人在数学上得到不同的发展”;
1.创设情境是落实新课程标准的重要措施。
新课程标准就数学学习方式提出如下建议:数学教学应“从学生的生活经验和已有知识背景出发,想他们提供充分的从事数学活动和交流的机会,促使他们在自主探索的过程中真正理解和掌握基本的数学知识技能,数学思想和方法,同时获得广泛的数学活动经验。”
有人说:“你拉来一批马给它喝水,不如让他感到口渴。”在讲“质数、合数”这节课时。我沿着新课程标准的理念设计安排了这样的导入 :“教师叙述,3月20日北京日报第九版有这样的报道:英美两家出版社悬赏100万美元,限期两年求证歌德巴赫猜想之解,截稿日期就是今天。”……随着上述情境的不断展开,学生悬念顿生,兴趣盎然,思维处于欲罢不能的愤悱状态。此时教师巧妙地把握住时机,导入 新课。这样从新闻入手,让学生感到口渴,学的知识有用,同时也感受到了数学自身的魅力。对数学随之充满了无限的兴趣,为本节课的顺利实施提供了有效的'条件。
2.教师的鼓励为学生体验成功搭设了舞台。
成功与快乐是学习的一种巨大的情绪力量,教师不失时机的积极鼓励,能使学生产生学好数学的强烈欲望.因此,教师要对学生任何成功的言行都要给予及时、明确和积极的强化。如微笑、点头、重复和阐述学生的正确答案。至于学生的一些错误反应,应该鼓励学生继续努力。可以对学生说:“有进步,谁能再补充一下?” 在讲“质数、合数”这节课,教师在引导学生发现判断质数、合数方法的过程中,自始至终都没有以一个“裁判者”的身份出现,而是力求使自己成为学生学习的促进者、参与协商,鼓励和监控学生的讨论和练习过程,但不控制学生的讨论结果。同时教师也把自己当作学习者,与学生一道共同完成学习任务。如:“你们的例子都举对了吗?同桌互相检查一下,你们听明白他的意思了吗?谁愿意再给大家说一遍?就用他的方法试一试?等,看似简简单单的几句话,教学民主却随处可见。”又如“在学生看过歌德巴赫猜想内容后,教师问你懂吗?学生说“我知道素数”教师及时评价:你还知道素数那,真了不起。你从哪知道的?学生说书上看的。教师评价:从你的言谈举止就看出了你是个爱读书的学者。等等。由于采用了新课程标准的理念,让学生充分体验了成功的喜悦。
3.学生的体验为探索与创造提供了可持续性发展的条件。
爱因斯坦说过:“提出一个问题比解决一个问题更重要。”在教学“质数、合数”这节课时,教师在课后设计了这样一个环节,你还想研究质数、合数有关的那些知识。这一过程,教师充分放手让学生去探究,留足学生探究的时间与空间,关注有差异的学生去发现,去完成自己的学习目标,使每个学生都积极参与“做”数学,能再课上研究的问题就在课上处理,留下的问题让学生向家长、老师、书籍、网络……学习,这样设计已经不只局限于使学生理解、掌握知识,更多关注的是培养学生探究知识能力,着眼学生的可持续发展。在这一过程中,当学生碰到困难时,教师是启发者,当学生迷路时,教师是指导者,当学生获得成功时,教师则是鼓励者。由于学生在数学活动中获得了成功的体验,有机会接触、了解、钻研自己感兴趣的数学问题,最大限度的满足了每一个学生数学学习的需要,让不同的人在数学上得到了不同的发展。
本节课中我本着以人的发展为本的教学理念,着眼于学生的可持续发展,注重教学目标 的多元化,在价值目标取向上不仅仅局限于学生获得一般的解决知识技能,更重要的是让学生在数学学习过程中感受到数学自身的魅力,获得数学的基本思想,了解数学的价值,体验问题解决的过程。
篇7: 质数和合数教学设计
教学目标:
1、掌握质数和合数的概念,并知道它们之间的联系和区别。
2、能够判断一个数是质数还是合数。
教学重难点:质数和合数的概念。根据概念判断一个数是质数还是合数。
教学准备:教学课件
教学互动过程:
一、创设情景,引入课题。
1、简单回顾因数和倍数的知识。
2、让学生列出1―20各数的因数,小组比一比,看谁列得快。
3、请同学们观察自己列出的这些数的因数,看看它们因数的个数有什么特点。(小组合作探究、讨论、汇报)
4、让学生按照汇报情况把这些数进行分类。
5、引出质数和合数的概念:因数只有1和它本身的数叫质数(也叫素数);除1和它本身以外,还有其他因数的数叫合数。(同时板书)
明确质数和合数的概念,结合刚才的分类进行初步理解。
二、学习质数和合数
1、在刚才的分类中,1好象没有被分到哪一类,那么1是质数还是合数呢?
2、了解了质数和合数的概念,现在同学们来判断一下,10以内的数中,哪些是质数,哪些是合数?
学生独立思考,根据概念判断,踊跃汇报。
3、组织学生做“我说你判断”的游戏,同桌之间互相说出一个数,请对方根据概念判断其为质数还是合数。
4、我们已经找出了10以内的质数,那么,大家能找出100以内的质数吗?
小组讨论找100以内的质数的方法,根据找10以内的质数的方法找,发现用这种方法找太慢。
5、对,逐个判断比较麻烦,是否有什么方法可以很快地找出来?用排除法可以吗?
6、下面同学们就用排除法来找一找100以内的质数。
小组讨论,合作探究,商讨寻找质数的方案。
7、同学们的方案真是严密呀,一个都不漏掉。现在同学们把课本24页表格中的自然数用排除法找出质数吧。
按照小组讨论的方案依次划掉不是质数的数,完整划出100以内自然数中的质数。
三、阅读材料,知识拓展,进行课堂练习。
1、让学生阅读教材第24页阅读材料“分解质因数”,了解如何对一个数分解质因数。
学生阅读材料,明确质因数的概念,知道如何对一个数进行分解质因数:把一个合数分解成几个质数的积。
2、说出几个合数,让学生对这几个数进行分解质因数:36、42、144、228。
3、让学生做练习四第1、2、3、题。
(教师巡视,了解学生对知识的掌握情况,个别指导。)
四、总结
组织学生说说这节课学到了哪些知识,以及有些什么收获。
篇8:质数和合数教学设计
教学内容:
质数和合数
教学目标:
1、理解质数和合数的概念,并能判断一个数是质数还是合数,,会把自然数按因数的个数进行分类、
2、培养学生细心观察、全面概括、准确判断、自主探索、独立思考、合作交流的`能力。
教学重点:
能准确判断一个数是质数还是合数、
教学难点:
找出100以内的质数、
教学过程:
一、复习导入(加深前面知识的理解,为新知作铺垫)
下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数。
3和15,4和24,49和7,91和13(指名回答。)
二、小组合作学习质数和合数的的概念。
全班分两组探讨并写出1——20各数的因数。
1、观察各数因数的个数的特点。
2、填写表格。
只有一个因数
只有1和它本身两个因数
除了1和它本身还有别的因数
3、师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这样的数叫做合数。(板书:质数和合数)
4、举例。
你能举一些质数的例子吗?
你能举一些合数的例子吗?
5、小练习:最小的质数是几?最小的合数是几?质数有多少个因数?合数至少有多少个因数?
6、探究“1”是质数还是合数。
刚才我们说了还有一类就是只有一个因数的。想一想:只有一个因数的数除了1还有其它的数吗?(没有了)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。)
引导学生明确:1既不是质数也不是合数。
7、小练习:自然数中除了质数就是合数吗?
三、给自然数分类。
1、想一想
师:按照是不是2的倍数把自然数分为奇数和偶数。按照因数个数的多少,把自然数分为哪几类?
生:质数,合数,0。
2、说一说
知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?
引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数;如果有两个以上因数,这个数就是合数。
四、师生学习教材24页的例1。
老师:除了用找因数的方法判断一个数是质数还是合数,还可以用查质数表的方法。
1、师引导学生找出30以内的质数。
提问:这些数里有质数、合数和1,现在要保留30以内的质数,其他的数应该怎么办?(先划去1)再划去什么?(再划去2以外的偶数)最后划去什么?(最后划去3、5的倍数,但3、5本身不划去)剩下的都是什么数?(剩下的就是30以内的质数。)
(特殊记忆20以内的质数,因为它常用。)
2、小组探究100以内的质数。
3、汇报100以内的质数。师生共同整理100以内的质数表。
4、应用100以内质数表:
5、小练习:
(1)所有的奇数都是质数吗?
(2)所有的偶数都是合数吗?
五、思维训练。
有两个质数,它们的和是小于100的奇数,并且是17的倍数,求这两个数。
六、课堂小结。
这节课你学会了什么?什么叫质数?什么叫合数?你会判断质数和合数吗?判断的关键是什么?
篇9:质数和合数教学设计
教学目标:
(1)经历“求因数—找规律—探究归纳—应用”等数学活动,发现并掌握质数和合数的特征,并能运用其特征判别质数和合数。
(2)在参与探索的过程中,培养观察、比较、分析、概括、推理能力,初步渗透分类归纳的数学方法和数学思想。
(3)体验数学“再创造”的乐趣,培养学生的数学意识和数学品质。
教学重点:掌握质数和合数的'特征。
学法指导:帮助学生在观察,思考中发现和体会。
教学准备:电子白板? 多媒体课件 教具
课前预习准备:课前布置学生阅读课本,熟悉学习内容。
教学过程:
活动一:复习因数与倍数相关知识
提问:什么是因数和倍数?怎么找出一个数的所有因数?
交流自己的方法
【设计意图】引导学生回忆因数和倍数的意义,同时为学习质数与合数进行有效铺垫。
活动二:理解质数与合数的概念。
全班分组探讨并写出1~20各数的因数。
1.观察各数因数的个数的特点。
2.根据因数个数可以把这些数字分成几类?
3.师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这们的数叫做合数。
4. 1既不是质数也不是合数
先小组交流,再请小组合作到讲台上给大家讲解分类方法及依据。
【设计意图】引导学生通过实际操作寻找1~20每个数字因数个数的不同,理解了质数与合数概念的不同。明白1既不是质数也不是合数。
活动三:寻找100以内所有质数。
1小组探究100以内的质数。
2汇报100以内的质数,说说不同的方法。
汇报时让学生充分说说划掉数的方法。
[设计意图]学生通过所学概念,选择自己喜欢的方法找出100以内的质数,学生逐步体会到了数学知识形成的过程,也获得了积极的情感体验。
活动四:自然数的分类
1。想一想
2。说一说。
注意两种分类方法的依据不同,所以分类不一样。
【设计意图】学生已经学习了奇数、偶数、质数、合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数、合数和偶数混同起来,因此通过此项活动帮助学生辨析这些概念。
相关练习:
1 P16页 1,2
2? 练习:(1)有的奇数都是质数吗?(2)所有的偶数都是合数吗?
3? 思维训练。
有两个质数,它们的和是小于100的奇数,并且是17的倍数。求这两个数。
2 课堂小结。
这节课你学会了什么?
板书设计
篇10:《质数和合数》教学设计
教学目标:
1、掌握质数和合数的概念,并知道它们之间的联系和区别。
2、能够判断一个数是质数还是合数。
教学重难点:质数和合数的概念。根据概念判断一个数是质数还是合数。
教学准备:教学课件
教学互动过程:
一、创设情景,引入课题。
1、简单回顾因数和倍数的知识。
2、让学生列出1—20各数的因数,小组比一比,看谁列得快。
3、请同学们观察自己列出的这些数的因数,看看它们因数的个数有什么特点。(小组合作探究、讨论、汇报)
4、让学生按照汇报情况把这些数进行分类。
5、引出质数和合数的概念:因数只有1和它本身的数叫质数(也叫素数);除1和它本身以外,还有其他因数的数叫合数。(同时板书)
明确质数和合数的概念,结合刚才的分类进行初步理解。
二、学习质数和合数
1、在刚才的分类中,1好象没有被分到哪一类,那么1是质数还是合数呢?
2、了解了质数和合数的概念,现在同学们来判断一下,10以内的数中,哪些是质数,哪些是合数?
学生独立思考,根据概念判断,踊跃汇报。
3、组织学生做“我说你判断”的游戏,同桌之间互相说出一个数,请对方根据概念判断其为质数还是合数。
4、我们已经找出了10以内的质数,那么,大家能找出100以内的质数吗?
小组讨论找100以内的质数的方法,根据找10以内的质数的方法找,发现用这种方法找太慢。
5、对,逐个判断比较麻烦,是否有什么方法可以很快地找出来?用排除法可以吗?
6、下面同学们就用排除法来找一找100以内的质数。
小组讨论,合作探究,商讨寻找质数的方案。
7、同学们的方案真是严密呀,一个都不漏掉。现在同学们把课本24页表格中的自然数用排除法找出质数吧。
按照小组讨论的方案依次划掉不是质数的数,完整划出100以内自然数中的质数。
三、阅读材料,知识拓展,进行课堂练习。
1、让学生阅读教材第24页阅读材料“分解质因数”,了解如何对一个数分解质因数。
学生阅读材料,明确质因数的概念,知道如何对一个数进行分解质因数:把一个合数分解成几个质数的积。
2、说出几个合数,让学生对这几个数进行分解质因数:36、42、144、228。
3、让学生做练习四第1、2、3、题。
(教师巡视,了解学生对知识的掌握情况,个别指导。)
四、总结
组织学生说说这节课学到了哪些知识,以及有些什么收获。
板书设计:
质数和合数
因数只有1和它本身的数叫质数(也叫素数)。
除1和它本身以外,还有其他因数的数叫合数。
规定:1不是质数,也不是合数。
10以内的自然数:2、3、5、7是质数;4、6、8、9、10是合数。
篇11:《质数和合数》教学设计
一、课前谈话:
师:同学们好,首先自我介绍一下,我姓侯,你们可以叫我什么呢?现在我们要在这里共同上一节数学课,我很想和大家成为朋友。作为朋友,我应该知道每个同学的名字。可是我又不能一下子把全班同学的名字全记住。于是,我想了一个好办法,那就是暂时先用学号来代替名字,这个办法可以吗?
学生回答(好)。
师:从左边起第一位同学为1号,向右依次为2号、3号…下面请同学们把自己的学号报一下,我对数字很感兴趣,看谁能让我先记住。
学生依次报学号。
师:我也是这个集体中的一员了,我就是?号了。
二、复习导入:
师:现在呀我想向同学们重新介绍我自己。我是?号,?是奇数,能被3整除。你们想不想像老师一样介绍一下你自己?谁来介绍?
学生回答,(强调:其它学生要认真倾听,看他们说得对不对.)根据回答中学生报的质数进行提问:它能被谁整除?板书,引导:还有哪位同学的学号也是这种情况,只能被1和这个数本身整除?(学生回答,教师相应板书10个左右质数)
师:谁的学号除了能被1和这个数本身整除以外,还能被别的数整除?(学生回答,教师相应板书10个左右合数)
三、探索新知
1、总结概念
师:那么这两组数都是什么数呢?请同学们看数学书59页的内容,看谁是一个会学习的孩子!
学生看书。
师:好了,我看了同学们看书很认真,那么通过看书你知道了这些数是什么数吗?(指着第一组数)
学生回答质数的概念。(如果不完整,引导:书上是怎么告诉我们的?)
师:同学们回答得很准确,像这样只有1和它本身两个约数,这样的数叫质数(又叫素数)。(教师相应画上椭圆,出示课题:质数。并贴出质数的概念。)
师:那通过看书你知道这些数又是什么数呢?(指着第二组数)
学生回答合数概念。
师:同学们回答得真完整。像这样如果除了1和它本身还有别的约数,这样的数叫做合数。(教师相应画上椭圆,出示课题:合数。并贴出合数的概念。)
师:这就是这节课我们要研究的内容。(手指课题)
下面我们把这两个概念齐读一下。
学生齐读。
师:现在我再向大家介绍一下我自己!我是39号,39除了1和它本身两个约数以外,还有别的约数,所以39是合数。你们也想这样向同学们介绍一下你自己吗?其他同学要认真听!听听他们介绍得对不对。(4、5个同学介绍)还有同学想介绍,那就请同桌两人互相介绍介绍吧!
2、游戏促学:
师:好了,咱们大家的学习兴致可真高!下面我们来做个游戏,学号是1——20的同学请注意,学号是质数的同学请起立,按从小到大的顺序报一下自己的学号。学号是最小的质数的学生请说一句话!
师:学号是合数的同学请起立,按从小到大的顺序报一下自己的学号。最小的合数请说一句话!
师:1——20号的同学,谁一次也没有站起来?你为什么不站呢?
学生回答。
说明:是的,1只有一个约数,所以它既不是质数,也不是合数。
3、认识质数表
师:判断一个数究竟是质数还是合数,除了根据概念去判断以外,还可以查看质数表。(出示100以内质数表)
师:这是一张100以内的质数表,在这里出现有是100以内的什么数?(质数)没有出现的呢?(合数和1)
师:现在请你将这些质数读一读,然后找出20以内的几个质数,并将它们记住。
学生读背。
师:20以内的质数谁背下来了?
学生回答。
师:你们可真聪明,记得这么快!现在我们又多了一个判断质数的方法,当我们运用概念判断有困难时,别忘了可以借助质数表。
师:刚才我们了解了质数与合数的特征,关于质数和合数方面的知识还有很多,谁愿意把你知道的向同学们介绍一下?(个别的问问从哪查到的)
篇12:“质数与合数”教学设计
【教学过程】
一、谈话导入
师:同学们,今天我们继续研究有关数的知识。
(出示数字卡片:把2、13、9、12、7、16、15贴在黑板上。)
师:看到这些数,你想到了什么?
生:2是12的因数,12是2的倍数,13、9、7、15是奇数,2、12、16是偶数……
师:9不仅是奇数,还有一个名字叫合数;2不仅是偶数,还有一个名字叫质数。2是质数,9是合数,那么其他的数是质数还是合数呢?
今天这节课,我们就一起来研究有关质数与合数的知识。(板书课题:质数与合数)
[通过复习,了解学生的知识储备,为下面的学习奠定基础。]
二、动手操作,探索新知
(一)操作,感悟
师:请两个同学商量一下你们想研究哪个数。
(学生商量研究的数。)
师(出示边长1厘米的正方形):今天,我们就借助这些小正方形帮助我们理解。
我来提出活动要求:
(1)你们研究哪个数,就从学具袋中取出几个正方形。
(2)用你们选好的正方形来拼摆长方形或正方形。能摆几种,就要摆出几种。
(3)将你摆的结果,填在表格中。
同时请你思考问题:
(1)你用几个小正方形拼出了你的长方形或正方形?
(2)你是怎样拼的?长方形的长、宽各是多少?或正方形的边长是多少?
(两个学生利用学具独立操作、拼摆。)
(学生依次汇报自己拼摆的结果,教师用电脑演示学生汇报的结果,并展示图形。)
[通过动手操作,让学生在操作中了解事物的特征,明确正方形的个数与长方形的长与宽之间的关系。学生通过动手操作得到了大量的学习资源,为后面的学习奠定了基础。学生与学生之间的互相交流,更加利于学生对知识的掌握。他们在相互的探讨中,使问题得到解决。]
(二)发现图形与算式的关系
师:你们看,拼成的长方形的长、宽与正方形的个数有什么关系?
(图形消失,出示乘法算式:7=7X1。)
生:长与宽相乘就得到了正方形的个数。
师:用XX个小正方形,可以拼出几个长方形?所以写出了几个乘法算式?
(学生根据自己拼摆的结果作出相应的回答。)
(三)发现算式与因数的关系
篇13:“质数与合数”教学设计
教学内容:
质数和合数,例1,例2
数学目标
1.理解质数和合数的意义。
2.会用质数表判断一个大于1的自然数是质数还是合数,熟记20以内的全部质数。
3.知道1既不是质数,也不是合数。
4.知道自然数按因数的个数分类可以分为质数、合数和1.
教学重难点:
1.掌握质数。合数的概念。
2.正确地判断一个数是质数还是合数。
教学过程:
一.复习旧知。
2. 找出1~20奇数,偶数。
1 3 5 7 9 11 13 15 17 19
2 4 6 8 10 12 14 16 18 20
3.分类:
师:自然数可以分为哪两类?是按照什么标准分的?(2的倍数分的)
二.探究新知。
a:1.导入课题:
师:自然数可以按照能被2整除分为奇数,偶数两类。
那么自然数还有没有其他的分法。今天这节课,我
们就一起来研究“质数与合数”(板书课题)
2.提问:
师:看了这一课题后,你们想通过这节课的学习学会些什么内容呢?
归纳问题(板书)
1) 怎样的数叫质数,怎样的数叫合数?
2) 自然数除了质数、合数外还有哪一类?
3) 用什么 方法判断一个数是质数还是合数?
b.学习质数,合数。
1.写出1~20各数的因数。(课件出示,学生完成表格)
1的因数1 6 1,2,3,6, 11 1,11, 16 1,2,4,8,16,
2 1,2, 7 1,7, 12 1,2,3,4,6,12, 17, 1,17,
3 1,3, 8 1,2,4,8, 13 1,13, 18 1,2,3,6,9,18,
4 1,2,4, 9, 1,3,9, 14 1,2,7,14, 19 1,19
5 1,5, 10, 1,2,5,10, 15 1,3,5,10 20 1,2,4,5,10,20
引导学生看因数(边回答,边看)
2.观察思考
师:这些书的因数的个数一样多吗?(生:不一样)
师:你能把这些数按因数的个数进行分类吗?
学生讨论,分类 (分为哪几类)
3.学
生12报结果(表格,学生完成)
只有一个因数 只有1和它本身两个因数 有两个以上因数的
1 2,3,5,7,11,13 4.,6,8,10,12
17,19 14,15,16,18,20
4. 观察比较,发现特点。归纳概念
质(1)师:观察2.,3,5,7,11,13,17,19 这几个数的因数有什么
特点?(每个数的因数只有1和它本身二个)像这样数叫做质数?
生:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
(板书) (课件出示)
篇14:《质数和合数》优秀教学设计
教学目标:
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
2、培养学生自主探索、独立思考、合作交流的能力。
3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。
教学重点:
1、理解掌握质数、合数的概念。
2、初步学会准确判断一个数是质数还是合数。
教学难点:
区分奇数、质数、偶数、合数。
教学设计:
一、出示课题,学习目标
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
二、出示自学指导
认真看课本
探究究竟什么样的数叫质数,什么样的数叫合数
三、学生看书,自学
四、效果检测
1、让学生举例说说哪些数是质数,哪些数是合数,并说出理由。
2、那你们认为“1”是什么数?
让学生独立思考,后展开讨论。
3、动手操作,制质数表。
五、练习巩固:
完成练习四第1、2题。
六、课题小结:
这节课你在激烈的讨论中有什么收获?
板书设计:
质数和合数
只有1和它本身两个因数的数是质数
有三个或以上因数的数是合数
1既不是质数也不是合数
【质数合数教学设计】相关文章:
1.质数和合数
6.找质数教学设计
10.教学设计






文档为doc格式