欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>上学期 2.9 函数的应用举例

上学期 2.9 函数的应用举例

2022-09-30 08:37:48 收藏本文 下载本文

“QOO”通过精心收集,向本站投稿了8篇上学期 2.9 函数的应用举例,这次小编给大家整理后的上学期 2.9 函数的应用举例,供大家阅读参考,也相信能帮助到您。

上学期 2.9 函数的应用举例

篇1:2.9函数应用举例(第四课时)

教学目的:根据实际问题,提出不同方案,建立数学模型,选定最佳方案,解决简单的市场经济问题。一、例题例1 某公司生产一种电子仪器的固定成本为XX0元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中x是仪器月产量.(1)                  将月利润表示为月产量的函数f(x);(2)                  当月产量为何值时,公司获利最大?最大利润为多少元?(总收益=总成本+利润)分析:由总收益=总成本+利润,知 利润=总收益-总成本.由于r(x)是分段函数,所以f(x)也是分段函数,要分别求出f(x)在各段的最大值,通过比较,确定f(x)的最大值.解:(1)设月产量为x台,则总成本为XX0+100x,从而(2)当0≤x≤400时, ∴当x=300时,有最大值25000;当x>400时,f(x)=60000-100x是减函数,f(x)<60000-100×400<25000.∴当x=300时,f(x)取得最大值25000.答:每月生产300台仪器时,利润最大,最大利润为25000元.

例2根据市场调查,某商品在最近的40天内的价格 与时间 满足关系 销售量 与时间 满足关系 。求这种商品的日销售额(销售量与价格之积)的最大值。解:据题意,商品的价格随时间 变化,且在不同的区间 与 上,价格随时间 的变化的关系式也不同,故应分类讨论。设日销售额为 。⑴当 时。当 或11时, ⑵当 时, 。当 时, 。综合(1)、(2)知当 或11时,日销售额最大,最大值为176。例3 有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是p和q(万元),它们与投入资金x(万元)的关系,有经验公式: .今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得最大利润是多少?分析:首先应根据题意建立利润与投入资金之间的函数关系,求得函数解析式,然后再化为求函数最大值的问题.解:设对甲种产品投资x万元,则乙种商品投资(3-x)万元,总利润y万元,依题意有: .令 则 所以 当 时ymax=1.05,此时x=0.75,3-x=2.25.由此可知,为获得最大利润,对甲、乙两种商品的资金投入应分别为0.75万元和2.25万元,获得总利润为1.05万元.二、课后作业:《精析精练》p103 智能达标训练

篇2:数学教案-函数的应用举例

数学教案-函数的应用举例

教学目标

1. 能够运用函数的性质,指数函数,对数函数的性质解决某些简单的实际问题.

(1) 能通过阅读理解读懂题目中文字叙述所反映的实际背景,领悟其中的数学本,弄清题中出现的量及其数学含义.

(2) 能根据实际问题的具体背景,进行数学化设计,将实际问题转化为数学问题,并调动函数的相关性质解决问题.

(3) 能处理有关几何问题,增长率的问题,和物理方面的实际问题.

2. 通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生分析问题,解决问题的能力和运用数学的意识,也体现了函数知识的应用价值,也渗透了训练的价值.

3. 通过对实际问题的研究解决,渗透了数学建模的思想.提高了学生学习数学的兴趣,使学生对函数思想等有了进一步的了解.

教学建议

教材分析

(1)本小节内容是全章知识的综合应用.这一节的出现体现了强化应用意识的要求,让学生能把数学知识应用到生产,生活的`实际中去,形成应用数学的意识.所以培养学生分析解决问题的能力和运用数学的意识是本小节的重点,根据实际问题建立数学模型是本小节的难点.

(2)在解决实际问题过程中常用到函数的知识有:函数的概念,函数解析式的确定,指数函数的概念及其性质,对数概念及其性质,和二次函数的概念和性质.在方法上涉及到换元法,配方法,方程的思想,数形结合等重要的思方法..事业本节的学习,既是对知识的复习,也是对方法和思想的再认识.

教法建议

(1)本节中处理的均为应用问题,在题目的叙述表达上均较长,其中要分析把握的信息量较多.事业处理这种大信息量的阅读题首先要在阅读上下功夫,找出关键语言,关键数据,特别是对实际问题中数学变量的隐含限制条件的提取尤为重要.

(2)对于应用问题的处理,第二步应根据各个量的关系,进行数学化设计建立目标函数,将实际问题通过分析概括,抽象为数学问题,最后是用数学方法将其化为常规的函数问题(或其它数学问题)解决.此类题目一般都是分为这样三步进行.

(3)在现阶段能处理的应用问题一般多为几何问题,利润最大,费用最省问题,增长率的问题及物理方面的问题.在选题时应以以上几方面问题为主.

教学设计示例

函数初步应用

教学目标

1.能够运用常见函数的性质及平面几何有关知识解决某些简单的实际问题.

2.通过对实际问题的 研究,培养学生分析问题,解决问题的能力

3.通过把实际问题向数学问题的转化,渗透数学建模的思想,提高学生用数学的意识,及学习数学的兴趣.

教学重点,难点

重点是应用问题的阅读分析和解决.

难点是根据实际问题建立相应的数学模型

教学方法

师生互动式

教学用具

投影仪

教学过程()

一.   提出问题

数学来自生活,又应用于生活和生产实践.而实际问题中又蕴涵着丰富的数学知识,数学思想与方法.如刚刚学过的函数内容在实际生活中就有着广泛的应用.今天我们就一起来探讨几个应用问题.

问题一:如图,△ 是边长为2的正三角形,这个三角形在直线 的左方被截得图形的面积为 ,求函数 的解析式及定义域. (板书)

(作为应用问题由于学生是初次研究,所以可先选择以数学知识为背景的应用题,让学生研究)

首先由学生自己阅读题目,教师可利用计算机让直线运动起来,观察三角形的变化,由学生提出研究方法.由学生说出由于图形的不同计算方法也不同,应分类讨论.分界点应在 ,再由另一个学生说出面积的 计算方法.

当 时, ,(采用直接计算的方法)

当 时,

.(板书)

(计算第二段时,可以再画一个相应的图形,如图)

综上,有 ,

此时可以问学生这是什么函数?定义域应怎样计算?让学生明确是分段函数的前提条件下,求出定义域为 .(板书)

问题解决后可由教师简单小结一下研究过程中的主要步骤(1)阅读理解;(2)建立目标函数;(3)按要求解决数学问题.

下面我们一起看第二个问题

问题二:某工厂制定了从底开始到底期间的生产总值持续增长的两个三年计划,预计生产总值年平均增长率为 ,则第二个三年计划生产总值 与第一个三年计划生产总值 相比,增长率 为多少?(投影仪打出)

首先让学生搞清增长率的含义是两个三年总产值之间的关系问题,所以问题转化为已知年增长率为 ,分别求两个三年计划的总产值.

设19总产值为 ,第一步让学生依次说出到20的年总产值,它们分别为:

20     

     

    年   (板书)

第二步再让学生分别算出第一个三年总产值 和第二个三年总产值

= + +

= .

= + +

= .(板书)

第三步计算增长率 .

.(板书)

计算后教师可以让学生总结一下关于增长率问题的研究应注意的问题.最后教师再指出关于增长率的问题经常构建的数学模型为 ,其中 为基数, 为增长率, 为时间.所以经常会用到指数函数有关知识加以解决.

总结后再提出最后一个问题

问题三:一商场批发某种商品的进价为每个80元,零售价为每个100元,为了促进销售,拟采用买一个这种商品赠送一个小礼品的办法,试验表明,礼品价格为1元时,销售量可增加10%,且在一定范围内礼品价格每增加1元销售量就可增加10%.设未赠送礼品时的销售量为 件.

(1)写出礼品价值为 元时,所获利润 (元)关于 的函数关系式;

(2)请你设计礼品价值,以使商场获得最大利润.  (为节省时间,应用题都可以用投影仪打出)

题目出来后要求学生认真读题,找出关键量.再引导学生找出与利润相关的量.包括销售量,每件的利润及礼品价值等.让学生思考后,列出销售量的式子.再找学生说出每件商品的利润的表达式,完成第一问的列式计算.

解: .(板书)

完成第一问后让学生观察解析式的特点,提出如何求这个函数的最大值(此出最值问题是学生比较陌生的,方法也是学生不熟悉的)所以学生遇到思维障碍,教师可适当提示,如可以先具体计算几个值看一看能否发现规律,若看不出规律,能否把具体计算改进一下,再计算中能体现它是最大?也就是让学生意识到应用最大值的概念来解决问题.最终将问题概括为两个不等式的求解即

(2)若使利润最大应满足

同时成立即 解得

当 或 时, 有最大值.

由于这是实际应用问题,在答案的选择上应考虑价值为9元的礼品赠送,可获的最大利润.

三.小结

通过以上三个应用问题的研究,要学生了解解决应用问题的具体步骤及相应的注意事项.

四.作业   略

五.板书设计

2.9 函数初步应用

问题一:

解:

问题二

分析

问题三

分析

小结:

篇3:上学期 2.2 函数

上学期 2.2 函数

教学目标:

1.理解函数的概念,了解函数三要素.

2.通过对函数抽象符号的认识与使用,使学生在符号表示方面的能力得以提高.

3.通过函数定义由变量观点向映射观点得过渡,使学生能从发展与联系的角度看待数学学习.

教学重点难点:重点是在映射的基础上理解函数的概念;

难点是对函数抽象符号的认识与使用.

教学用具:投影仪

教学方法:自学研究与启发讨论式.

教学过程:

一、复习与引入

今天我们研究的内容是函数的概念.函数并不象前面学习的集合,映射一样我们一无所知,而是比较熟悉,所以我先找同学说说对函数的认识,如函数是什么?学过什么函数?

(要求学生尽量用自己的话描述初中函数的定义,并试举出各类学过的函数例子)

学生举出如 等,待学生说完定义后教师打出投影片,给出定义之后教师也举一个例子,问学生.

提问1. 是函数吗?

(由学生讨论,发表各自的意见,有的认为它不是函数,理由是没有两个变量,也有的认为是函数,理由是可以可做 .)

教师由此指出我们争论的焦点,其实就是函数定义的不完善的地方,这也正是我们今天研究函数定义的必要性,新的定义将在与原定义不相违背的基础上从更高的观点,将它完善与深化.

二、新课

现在请同学们打开书翻到第50 页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问)

提问2.新的函数的定义是什么?能否用最简单的语言来概括一下.

学生的回答往往是把书上的定义念一遍,教师可以板书的形式写出定义,但还要引导形式发现定义的本质.

(板书)2.2函数

一、函数的概念

1.定义:如果A,B都是非空的数集,那么A到B的映射 就叫做A到B的函数,记作 .其中原象集合A称为定义域,象集C 称为值域.

问题3:映射与函数有何关系?(函数一定是映射吗?映射一定是函数吗?)

引导学生发现,函数是特殊的映射,特殊在集合A,B必是非空的数集.

2.本质:函数是非空数集到非空数集的映射.(板书)

然后让学生试回答刚才关于 是不是函数的问题,要求从映射的角度解释.

此时学生可以清楚的看到 满足映射观点下的函数定义,故是一个函数,这样解释就很自然.

教师继续把问题引向深入,提出在映射的观点下如何解释 是个函数?

从映射角度看可以是 其中定义域是 ,值域是 .

从刚才的分析可以看出,映射观点下的函数定义更具一般性,更能揭示函数的本质.这也是我们后面要对函数进行理论研究的一种需要.所以我们着重从映射角度再来认识函数.

3.函数的三要素及其作用(板书)

函数是映射,自然是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它.

例1以下关系式表示函数吗?为什么?

(1) ;         (2) .

解:(1)由 有意义得 ,解得 .由于定义域是空集,故它不能表示函数.

(2) 由 有意义得 ,解得 .定义域为 ,值域为 .

由以上两题可以看出三要素的作用

(1)判断一个函数关系是否存在.(板书)

例2下列各函数中,哪一个函数与 是同一个函数.

(1) ;  (2)   (3) ;  (4) .

解:先认清 ,它是 (定义域)到 (值域)的映射,其中

再看(1)定义域为 且 ,是不同的;   (2)定义域为 ,是不同的;

(4) ,法则是不同的;

而(3)定义域是 ,值域是 ,法则是乘2减1,与 完全相同.

求解后要求学生明确判断两个函数是否相同应看定义域和对应法则完全一致,这时三要素的又一作用.

(2)判断两个函数是否相同.(板书)

下面我们研究一下如何表示函数,以前我们学习时虽然会表示函数,但没有相系统研究函数的表示法,其实表示法有很多,不过首先应从函数记号 说起.

4.对函数符号 的理解(板书)

首先让学生知道 与 的含义是一样的,它们都表示 是 的.函数,其中 是自变量, 是函数值,连接的纽带是法则 ,所以这个符号本身也说明函数是三要素构成的整体.下面我们举例说明.

例3已知函数 试求 (板书)

分析:首先让学生认清 的含义,要求学生能从变量观点和映射观点解释,再进行计算.

含义1:当自变量 取3时,对应的函数值即 ;

含义2:定义域中原象3的象 ,根据求象的方法知 .而 应表示原象 的象,即 .

计算之后,要求学生了解 与 的区别, 是常量,而 是变量, 只是 中一个特殊值.

最后指出在刚才的题目中 是用一个具体的解析式表示的,而以后研究的函数 不一定能用一个解析式表示,此时我们需要用其他的方法表示,具体的方法下节课再进一步研究.

三、小结

1. 函数的定义

2. 对函数三要素的认识

3. 对函数符号的认识

四、作业:略

五、板书设计

2.2函数                    例1. 例3.

一. 函数的概念

1. 定义

2. 本质                  例2. 小结:

3. 函数三要素的认识及作用

4. 对函数符号的理解

篇4:Excel截取中文的综合函数应用举例

在Excel里,可以根据函数截取各种字符,仍然,却没有截取中文的函数,

因此,要想让Excel能够截取单元格中的中文汉字,我们就必须借助多个函数,实现综合应用,才能截取相应的汉字。

以下是举例,希望对您有帮助。

如下表。

看好了,单元格A1中的内容,是中文和其它英文字符数据的混合,请注意,中文要么在左边要么在右边,并且,必须是连续的,如上图一样,这样,才能够通过综合函数截取出来。

一、截取除汉字之外的字符

如下图。

通过公式:=RIGHT(A1,LEN(A1)*2-LENB(A1))

就可以实现截取。

二、截取汉字

如下图。

直接通过公式:=LEFT(A1,LEN(A1)*2-LENB(A1))

就可以截取。

如上的截取,函数都很简单,但是难以理解,下面,给您逐一介绍。

三、综合函数分析

LEFT函数,我们都是知道,左截取字符的函数。指的是从左边开始截取。同类,RIGHT函数是右截取函数。

LEFT函数中文语法可以理解为:LEFT(A1,截取长度),即从左边第一位开始截取字符串,截取指定的长度,

A1为要截取的对象。RIGHT函数同理,就不再介绍了。

现在,我们来仔细分析如上的综合函数::=LEFT(A1,LEN(A1)*2-LENB(A1))

套用如上的LEFT的中文语法,可理解为LEFT(A1,截取长度),即截取长度这个参数的值相当于LEN(A1)*2-LENB(A1)。

LEN函数是用于求一个字符串的长度的。而LENB函数是用来求一个字符串的字节数量的。

注意,无论大小英文、中文或其它符号,通过LEN求长度,每个字符只占一个单位。而LENB函数求字节大小时,中文中两个单位,而非中文只占一个单位。至于这两个函数的介绍,请参阅文章:www.dzwebs.net/3164.html

举例:假设A1单元格的内容是:大众计算机6789

那么,LEN(A1)返回值为:9,即每个字符占一个单位,共有九个,因此返回九。

LENB(A1),用来求A1单元格的内容的字节数,返回14.

现在,我们的理论是来源于这种思想的,A1单元格的字符长度的两倍即LEN(A1)*2减去A1单元格的字节数,就等于中文的所占的长度。

LEN(A1)*2相当于把A1中的内容,每个字符按两个长度来算。

所以才会推论出:=LEFT(A1,LEN(A1)*2-LENB(A1))公式截取左边的中文。

当然,LEFT和RIGHT函数,不管中文还是英文还是其它符号,每个字一律按一个长度来算。只有LENB函数会将一个中文以两个长度来计算。

篇5:上学期 2.3 函数单调性与奇偶性

上学期 2.3 函数单调性与奇偶性

教学目标

1.使学生了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性.

2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的思想方法.

3.在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神.

教学重点,难点

重点是奇偶性概念的形成与函数奇偶性的判断

难点是对概念的认识

教学用具

投影仪,计算机

教学方法

引导发现法

教学过程

一. 引入新课

前面我们已经研究了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质.从什么角度呢?将从对称的角度来研究函数的性质.

对称我们大家都很熟悉,在生活中有很多对称,在数学中也能发现很多对称的问题,大家回忆一下在我们所学的内容中,特别是函数中有没有对称问题呢?

(学生可能会举出一些数值上的对称问题, 等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如 和 等.)

结合图象提出这些对称是我们在初中研究的关于 轴对称和关于原点对称问题,而我们还曾研究过关于 轴对称的问题,你们举的例子中还没有这样的,能举出一个函数图象关于 轴对称的吗?

学生经过思考,能找出原因,由于函数是映射,一个 只能对一个 ,而不能有两个不同的,故函数的图象不可能关于 轴对称.最终提出我们今天将重点研究图象关于 轴对称和关于原点对称的'问题,从形的特征中找出它们在数值上的规律.

二. 讲解新课

2.函数的奇偶性(板书)

教师从刚才的图象中选出 ,用计算机打出,指出这是关于 轴对称的图象,然后问学生初中是怎样判断图象关于 轴对称呢?(由学生回答,是利用图象的翻折后重合来判定)此时教师明确提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律?

学生开始可能只会用语言去描述:自变量互为相反数,函数值相等.教师可引导学生先把它们具体化,再用数学符号表示.(借助课件演示令 比较 得出等式 ,再令 ,得到 ,详见课件的使用)进而再提出会不会在定义域内存在 ,使 与 不等呢?(可用课件帮助演示让 动起来观察,发现结论,这样的 是不存在的)

从这个结论中就可以发现对定义域内任意一个 ,都有 成立.最后让学生用完整的语言给出定义,不准确的地方教师予以提示或调整.

(1) 偶函数的定义:如果对于函数 的定义域内任意一个 ,都有 ,那么 就叫做偶函数.(板书)

(给出定义后可让学生举几个例子,如 等以检验一下对概念的初步认识)

提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出 或 的图象让学生观察研究)

学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义.

(2) 奇函数的定义: 如果对于函数 的定义域内任意一个 ,都有 ,那么 就叫做奇函数.(板书)

(由于在定义形成时已经有了一定的认识,故可以先作判断,在判断中再加深认识)

例1.  判断下列函数的奇偶性(板书)

(1) ;              (2) ;

(3) ; ;

(5) ;  (6) .

(要求学生口答,选出1-2个题说过程)

解: (1) 是奇函数.(2) 是偶函数.

(3) , 是偶函数.

前三个题做完,教师做一次小结,判断奇偶性,只需验证 与 之间的关系,但对你们的回答我不满意,因为题目要求是判断奇偶性而你们只回答了一半,另一半没有作答,以第(1)为例,说明怎样解决它不是偶函数的问题呢?

学生经过思考可以解决问题,指出只要举出一个反例说明 与 不等.如 即可说明它不是偶函数.(从这个问题的解决中让学生再次认识到定义中任意性的重要)

从(4)题开始,学生的答案会有不同,可以让学生先讨论,教师再做评述.即第(4)题中表面成立的 = 不能经受任意性的考验,当 时,由于 ,故 不存在,更谈不上与 相等了,由于任意性被破坏,所以它不能是奇偶性.

教师由此引导学生,通过刚才这个题目,你发现在判断中需要注意些什么?(若学生发现不了定义域的特征,教师可再从定义启发,在定义域中有1,就必有-1,有-2,就必有2,有 ,就必有 ,有 就必有 ,从而发现定义域应关于原点对称,再提出定义域关于原点对称是函数具有奇偶性的什么条件?

可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论.

(3) 定义域关于原点对称是函数具有奇偶性的必要但不充分条件.(板书)

由学生小结判断奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.

经学生思考,可找到函数 .然后继续提问:是不是具备这样性质的函数的解析式都只能写成这样呢?能证明吗?

例2.  已知函数 既是奇函数也是偶函数,求证: .(板书)   (试由学生来完成)

证明: 既是奇函数也是偶函数,

= ,且 ,

= .

,即 .

证后,教师请学生记住结论的同时,追问这样的函数应有多少个呢?学生开始可能认为只有一个,经教师提示可发现, 只是解析式的特征,若改变函数的定义域,如 , , , ,它们显然是不同的函数,但它们都是既是奇函数也是偶函数.由上可知函数按其是否具有奇偶性可分为四类

(4) 函数按其是否具有奇偶性可分为四类: (板书)

例3.  判断下列函数的奇偶性(板书)

(1) ;       (2) ;   (3) .

由学生回答,不完整之处教师补充.

解: (1)当 时, 为奇函数,当 时, 既不是奇函数也不是偶函数.

(2)当 时, 既是奇函数也是偶函数,当 时, 是偶函数.

(3) 当 时, 于是 ,

当 时, ,于是 = ,

综上 是奇函数.

教师小结 (1)(2)注意分类讨论的使用,(3)是分段函数,当 检验 ,并不能说明 具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须 均有 成立,二者缺一不可.

三. 小结

1. 奇偶性的概念

2. 判断中注意的问题

四. 作业 略

五. 板书设计

2.函数的奇偶性 例1.                 例3.

(1) 偶函数定义

(2) 奇函数定义

(3) 定义域关于原点对称是函数 例2.                  小结

具备奇偶性的必要条件

(4)函数按奇偶性分类分四类

篇6:《百分数的应用(三)》六年级上学期教学反思

《百分数的应用(三)》六年级上学期教学反思

将数学内容“生活化”。“数学源自生活而应用于生活”本节课设计上充分体现新课标理念,从引入、新课、巩固等环节的取材大都源于学生的生活实际,例题从生活中来,让学生感受到数学与生活的.密切联系,通过探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,突出数学应用价值,培养学生的应用意识和创新能力。

教学过程中,我还注意要学生用自己的语言来表达,避免死记硬背,在学生明确增加百分之几的意思后,还鼓励他们根据实际问题中的数量关系和百分数的意义解决问题,而不是依靠记忆类型和套用公式来解题,借用学生已有的知识经验和生活实际,有效地理解了百分数应用题的数量关系和实用价值。

课后有很多遗憾,比如上课节奏把握不好,后面练习过紧,学生没有足够的时间去消化、理解新知识,学生的学习效率仍需要提高,练习题里没有时间让学生画线段帮助自己充分理解、巩固,学生的语言表达并不很准确等,缺乏评价性、激励性的语言。

篇7:无穷区间上一类抽象函数族相对紧的判定及其应用

无穷区间上一类抽象函数族相对紧的判定及其应用

给出了无穷区间上一类抽象连续可微函数族相对紧性判定的一个充要条件,并应用它获得了二阶微分方程终值问题解的.存在性.

作 者:刘振斌 刘立山 赵静 LIU Zhenbin LIU Lishan ZHAO Jing  作者单位:刘振斌,LIU Zhenbin(曲阜师范大学数学科学学院,曲阜,273165;青岛农业大学理学院,青岛,266109)

刘立山,LIU Lishan(曲阜师范大学数学科学学院,曲阜,273165)

赵静,ZHAO Jing(青岛农业大学理学院,青岛,266109)

刊 名:系统科学与数学  ISTIC PKU英文刊名:JOURNAL OF SYSTEMS SCIENCE AND MATHEMATICAL SCIENCES 年,卷(期): 28(3) 分类号:O1 关键词:相对紧   充要条件   等度连续   终值问题  

篇8:上学期《新课程环境下小学数学教学资源库的建设与应用》课题研究

。为进行本课题的进一步研究,顺利完成课题研究任务,特制定我校2011年上学期课题研究工作计划。

一、指导思想:

深入贯彻《基础教育课程改革纲要(试行)》精神,以义务教育《数学课程标准》为指导,坚持解放思想,因地制宜,开拓创新,与时俱进,努力开发出数量充足,能与教学实际紧密相连的“合理、合时、合用”的优秀的数学教学资源,并开展“课程资源促进有效教学的研究”,将已经开发的教学资源包与课堂教学有机结合,促进课题研究人员的专业素质和教研水平的提高,切实提高课堂效率和教学质量。

二、总体目标:

1、认真完成本学期总课题组分配的资源包开发任务,力争开发出实用、精美的优质教学资源包。

2、进一步充实学校数学教学资源网站以及教师个人博客,广泛收集、整理我校教师自行开发的教学资源,为广大师生提供交流学习的`平台。

3、继续开展“教学资源的有效利用研究”工作,并作好实验记录,切实提高课堂效率和教学质量。

4、边开发边研究边做好本课题的资料整理和归档工作(包括纸质的和电子文本),全面迎接本学期的省课题中期评估工作。

5、开展征集供4、5、6年级使用的教学资源(1)“实践活动与游戏”,(2)“背景与故事”等的活动。

三、主要措施

1、争取学校领导的重视以及社会力量的支持,保证本课题必要的经费开支,并及时向学校领导汇报课题的进展情况。

2、对课题组成员提出研究要求,实行目标管理,采取定期与不定期检查的方法督促各研究人员积极参与研究工作,完成好研究任务。

3、进一步根据实际情况建立健全课题研究的各项规章制度,制定课题工作计划,期末进行课题工作总结。

3、开展自学、研讨、专家讲座、教学比武等不同形式的活动,促进课题的开展,提高实验教师的理论水平与实践研究能力,

论文

4、采取一定的激励机制,充分提高实验教师的积极性,保证课题研究的顺利开展。

四、主要工作:1、召开课题组全体人员会议,传达上级精神,确立本课题今后的研究方向,布置本学期课题研究工作任务,对课题研究人员提出研究要求。研究方向:在完成总课题组分配的工作任务同时,进一步明确本校子课题特点的“个性”研究任务,即结合本学期教学教研工作,收集整理相关教学资源,充实和完善本校的数学教学资源网站,同时做好“课题资源有效利用研究”工作。工作任务:(1)完成6个资源包的开发任务。具体分工如下:资源包名称・・      年级・・・    开发者《小数的性质和大小比较》     四・・・ 米来     张莉《三角形的认识》・・ 四・・     黄维、谢斌、左伏兵《长方体、正方体的表面积》   五・・     刘伟、李理、赵资源《分数加减混合运算》・   五・・    刘芳、肖茵、王清江《解比例》・・・ 六・      周志华、黄霞辉、罗中意《图形的测量》・・   六・・      聂晶      钟连平(2)每位研究人员充实自己的个人博客。(3)做好“课题资源有效利用研究”工作。(主要为一、二、三年级实验教师)2、为督促教师完成好课题研究任务,杜绝“临时抱佛脚”,“敷衍了事”的现象,保证资源包的开发和其他工作的质量,定期对教师的完成情况进行检查和不定期抽查,并及时进行通报。3、结合学校教研专题活动――“如何在课堂上让学生更有效地学习”,收集和整理有关资源。

4、做好研究成果的推介工作。推出3~5篇文章(论文、案例、研究报告等)向各报刊杂志社推荐投稿发表。

5、召开学期课题工作总结会议,上交新开发的教学资源包,上传优秀教学案例、课件及教学反思等到学校资源库。

湘潭市湘纺小学数学课题组

2011年2月24日

【上学期 2.9 函数的应用举例】相关文章:

1.函数的应用知识点总结

2.Excel函数应用:函数的参数

3.随波逐流造句举例

4.初一作文举例

5.演讲稿开场白举例

6.做题总结举例

7.主谓短语举例

8.论文题目举例

9.上学期科研工作计划

10.五年级上学期作文

下载word文档
《上学期 2.9 函数的应用举例.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部