欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 作文 > 作文大全>数学之美作文

数学之美作文

2022-06-17 08:31:16 收藏本文 下载本文

“woshi阿木木”通过精心收集,向本站投稿了15篇数学之美作文,下面是小编为大家整理后的数学之美作文,仅供大家参考借鉴,希望大家喜欢,并能积极分享!

数学之美作文

篇1: 数学之美作文

数学之美作文

数学,是打开科学大门的一把钥匙。数学,既锻炼了我们的思维,又给平淡的生活增添了几分乐趣。

数学中有个很有意思的东西,他的名字叫“莫比乌斯环”,为什么说他很有意思呢?因为,我们普通的一个圆环,之后两个面,也就是正面和反面,两面可以涂上不同的.颜色;而莫比乌斯环,它具有魔术般的性质,它没有正反面之分,也就是说,用笔不间断的涂色,你无需翻面,就可以将纸的两面全部涂上颜色,换一种说法,一只小虫子可以爬遍整个曲面,而不跨过他的边缘,这种环形,就叫莫比乌斯环,也叫莫比乌斯带。

莫比乌斯带不仅好玩,制作也很方便,只要将一个长方形纸条扭转180°,一个莫比乌斯环就做好了。

不过,莫比乌斯环的有趣之处还不止有以上两点,莫比乌斯环,沿着中间的线把它剪开,它不仅不会一分为二,还会变成一个是原来的二倍的大环,如果再沿着中间剪开,这次就真的一分为二了,但有趣的是,两个圆总是相互套在一起,而不分开。

而且,莫比乌斯环在工业领域上的作用也很大,如:用皮带传送的动力机械的皮带就可以做成“莫比乌斯环”的样子,这样皮带可以磨损的面积就变大了;如果把录音机的磁带做成“莫比乌斯环”的样子,磁带就只有一个面了,它还能平坦的嵌进三维空间呢!

莫比乌斯环还能用于装饰,比如莫比乌斯环戒指就比普通的戒指漂亮的多!

数学是所有学科中最有意思的学科,也是所有学科中最美的学科,让我们一起走进数学的世界,一起惊叹于数学之美吧!

篇2:数学之美读后感

人们发现真理的形式上从来都是简单的,而不是复杂和含混的。

——牛顿

自小就学数学的我,并不觉得它是美好的。于我而言,数学就像紧箍咒一样,不能提,一提。就头疼。

而看了吴军博士所写的《数学之美》后,我对数学的感觉,从以前的被动获取和勉强学习,变成了强烈热爱和主动积极的学习。这原因就在于我发现了它的价值,它的一枝独秀,不可或缺的地位,数学的博大精深和对其相关的各类事业的发展的价值已使我深深陶醉其中。这本书中有很多复杂且长的公式,但这并不妨碍大众的阅读,因为它并非在于让你了解更多IT领域的知识,而是用了大量篇幅介绍各个领域的典故,让我们感受数学思维。这就像李欣教授所说:“成为一个领域的大师有其偶然性,但更有其必然性。其必然性就是大师们的思维方法。”

英国哲学家弗朗西斯·培根在《论美德》这篇文章中讲:“美德就如同华贵的宝石,在朴素的衬托下最显华丽。”数学的美妙,也恰恰在于一个好的思维,好的方法。

在《数学之美》十四章,我被它的标题吸引到了。“余弦定理和新闻的分类”,这俩看似八竿子打不着。却有着紧密的联系。可以说,新闻的分类很大程度上依赖的是余弦定理。我们都知道,计算机处理一个问题是让他去算,而不是像人类一样理解了它,再去解决。而科学家们遇到这个问题,却用了另一种思维,他们把文字的新闻变成一组可计算的数字,然后再设计一个算法来算出任意两篇新闻的相似性。稍详细一些就是:对于一篇新闻中的所有实词。计算出它们的TF-IDF值,再把这些值按照其在对应词汇表的位置依次排列就得到一个向量,这即新闻的特征向量。这时,就可以通过计算两个向量夹角来判断对应的新闻主题的接近程度,这也就要用到余弦定理了。我在必修五数学书上学到余弦定理时,很难想象它可以用来对新闻进行分类。在这里我又一次看到了数学工具的用途。

在书中,我也了解到了数学的发展实际上是不断的抽象和概括的过程。这些抽象了的方法看似离生活越来越远,但他们最终能找到应用的地方,布尔代数便是如此。

布尔代数的简单不能再简单了。运算的元素只有两个0和1,基本的运算只有“与”、“或”和“非”。几乎就是我们现在所学的“判断命题真假”。在布尔代数提出后的80多年里,他确实没有什么像样的应用。直到1938年香农在他的硕士论文中指出,布尔代数来实现开关电路。才使得布尔代数成为数字电路的基础。正是依靠这一点,人类用一个个开关电路最终“搭出”电子计算机。

这些,都能体现作者“简单即是美”的思想。他在书中也写道:“数学的精彩之处就在于简单的模型可以干大事。”这些,也都是我从未感受到过的。并且,在这本书中,作者也用了不少篇幅来介绍通信领域的世界级专家,让我对真正的世界级学者有更多的了解和理解,比如贾里尼克,Google AK-47的设计者——阿米特·辛格博士,自然语言处理的教父米奇·马库斯等等。

爱因斯坦说过:“从希腊哲学到现代物理学的整个科学史中。不断有人力图地表面上极为复杂的自然现象归结为几个简单的基本概念和关系,这就是整个自然哲学的基本原理。”这本书把数学在IT领域的美丽予以了精彩表达,我也知道,把一件复杂的事用简单的语言表达出来,并非易事,这应该也是各界人士都对这本书予以好评的原因吧。

当然,我也明白,欣赏美不是终极目的,更值得我们追求的是创造美境界。

还有,希望未来的自己,无论生活好与坏,都能少一点浮躁,多一点踏实和对自然科学本质的好奇求知。

篇3:数学之美读后感

数学之美,源自数学的概括与抽象。而数学的抽象,又恰恰是许多人难以接受数学之梗阻。所以,一般来说,能够欣赏到数学之美,必有一定的数学基础。不过,吴军的《数学之美》,语言通俗,略沉心境,顺利读懂其要义,应该是不难的事。有这种说法,真正的大师,能够将复杂的东西,通俗表达。这话我不尽信,但也确实佩服那些把数学理论通俗易懂、形象生动描述的专家,读了《数学之美》,觉得吴军博士不错。

人类发明了许许多多的语言,如自然语言(包括各国各民族的语言)、音乐、绘画等,数学也是一种语言。读懂各种语言,需要下一定功夫,只是有些语言本身比较通俗,功夫不用太深,但像数学这样的语言,数字化,符号化,抽象化,逻辑化,难言大众望而生畏,也着实不少人望而却步。如果我们的数学老师们,能够将这些“化”都“简化”,或者尽量简化些,那是不是有更多的人有迎难而上的勇气呢?也许吧!然而,毕竟数学除了作为工具性角色,还要培养和训练人的思维,一味地简化和通俗,那种逻辑思维的特征要素,失之亦可惜呀。前些日,读了保罗.洛克哈特(美国)的《度量:一首献给数学的情歌》,其对形状和运动的度量叙述,非常通俗,给人启发,但对我这数学背景出身的人来说,因思想深处固守那份对抽象性和逻辑性的呆痴,而总感觉其味不够,犹如爱好辣味的江西人,怕不辣二无味。

五世纪著名数学评论家普洛克拉斯说:“哪里有数,那里就有美”。我国著名数学家华罗庚说:“就数学本身而言,是壮丽多彩、千姿百态、引人入胜的……认为数学枯燥乏味的人,只是看到了数学的严谨性,而没有体会出数学的内在美。”数学之美表现丰富,如美的形式符号、美的公式、美的曲线、美的曲面、美的证明、美的方法、美的理论等。从内容来说,数学之美有可分为结构美、语言美与方法美,数学也有简洁之美、对称之美、和谐之美。罗素说,数学的美,“是一种冷而严肃的美”。所以,欣赏数学的美,是需要一定能力和技巧的。

数学的应用,也是数学美的特征。科学发展到现在,数学应用无处不在,数学应用的方法很多。一个数学的抽象,包含了无穷的客观现实。解决问题,尽量方法简单,能简不繁,是一种原则。数学应用之美,就在于简单,在于巧妙,在于效奇。

作者:邓毅雄

篇4:数学之美读后感

《数学之美》,读来确实有感:数学美。

――邓毅雄

吴军博士的《数学之美》

读来确实有感:数学美。

――邓毅雄

这本书,主要涉及自然语言处理、网络搜索引擎等问题,介绍解决问题的数学方法,这些方法基本不属高大上,用到的数学知识并不复杂,有的甚至属中等数学,如余弦定理。像较好解决复杂的自然语言识别与翻译的统计方法,只是条件概率与马尔可夫链的应用;解决网页排名的PageRank算法,其核心是数学的n维向量和数值计算中的迭代法;密码学中的公开密钥方法,仅仅是较大素数的乘、除运算而已,等等。复杂的现实问题,简单的数学方法,彰显数学之韵味和数学之美。

篇5:《数学之美》读后感

《数学之美》读后感

确切的来说,《数学之美》并不是一本书,它是谷歌黑板报中的一系列文章,介绍数学在信息检索和自然语言处理中的主导作用和奇妙应用,每一篇文章都不长,但小中见大,从看似高深的高科技中用通俗易懂的案例展示了数学之美,深深的吸引了我,

这一系列文章的作者是google公司的科学家吴军。他毕业于清华大学计算机系(本科)和电子工程系(硕士),并于1993-在清华任讲师。他于19起在美国约翰霍普金斯大学攻读博士,并于XX年获得计算机科学博士学位。在清华和约翰霍普金斯大学期间,吴军博士致力于语音识别、自然语言处理,特别是统计语言模型的研究。他曾获得1995年的全国人机语音智能接口会议的最佳论文奖和XX年eurospeech的最佳论文奖。

吴军博士于XX年加入google公司,现任google研究院资深研究员,

到google不久,他和三个同事们开创了网络搜索反作弊的研究领域,并因此获得工程奖。XX年,他和两个同事共同成立了中日韩文搜索部门。吴军博士是当前google中日韩文搜索算法的主要设计者。在google其间,他领导了许多研发项目,包括许多与中文相关的产品和自然语言处理的项目,并得到了公司首席执行官埃里克.施密特的高度评价。吴军博士在国内外发表过数十篇论文并获得和申请了近十项美国和国际专利。他于XX年起,当选为约翰霍普金斯大学计算机系董事会董事。

正是他在信息检索与自然语言处理领域中的一系列工作,使他讲述了我所看到的内容-数学之美。

看了数学之美,立即联想到了金庸小说中的武林高人,总是把一套大多数人都会的入门功夫使得威力无比,击溃众多敌者。东西放在那,它的威力如何,并键在于使用者,武术如此,数学同样如此。

于我而言,语音视别是一类高科技,作为非专业人土,深觉高奥。但看完数学之美之后,顿感惊诧,原来如此深奥东西的`解决方法自己也学过,并且理工科读过大学的人都学过,那就是统计学中的条件概率p(a/b),即b事件发生条件下a事件发生的概率。

如果s表示一连串特定顺序排列的词w1,w2,…,wn,换句话说,s可以表示某一个由一连串特定顺序排练的词而组成的一个有意义的句子。现在,机器对语言的识别从某种角度来说,就是想知道s在文本中出现的可能性,也就是数学上所说的s的概率用p(s)来表示。利用条件概率的公式,

篇6: 《数学之美》读后感

前一阵子因兴趣研究CMUSphinx这套库的应用不得要领,就去查看了下一些语音识别的基本原理的文章,偶然碰到了数学之美。其实浪潮之巅也是因此开始看的、结果先一步看完了,毕竟一本历史书,一本介绍数学和语言处理的,难度不同

说实话,因为初中高中荒废了太多时间,我的英文和数学基础比较差,我大学的数学都是勉强修过的。一直以来数学对我是一个很恐怖的学科,也不知道为什么计算机专业对数学要求比较高。我个人就是数学分数很低,但是专业课学的还不错,唯一好点的数学科目就是离散数学吧,另外的工科数学分析和高等代数都是惨不忍睹的

看完这本书后,我发现我还真是低估了数学的作用,一个复杂的语言识别过程,用统计语言模型竟然用那么简单的数学模型就解决了,这对我的冲击很大。另一个对我影响比较大的就是余弦定理和新闻的分类。以前那些各种三角函数的变换、三角函数,各种向量,各种空间图形在我印象中就只能用于画设计图,或者搞空间物理化学等基础学科的应用上,想着“这种东西和计算机编程有什么关系?要计算角度,库里不都提供了吗?”,哪成想到改变一下思路,改变一下方法,就简单的把那么复杂的分裂问题给解决了。现在想想我当初想法还真是幼稚啊,可惜覆水难收,过去的时间已经回不来了,但至少我现在明白了数学的重要性,总能想办法弥补的。

不得不说国内的教科书还真是太死板了。很多书上,先不说没讲应用领域和这个能干吗,有些教科书连推导过程也没说明白。像我大学时候的那几本高代高数的教科书,在某一步关键的过程写一句“显而易见”,然后就莫名其妙的出现了结果,这让我们基础差的人情何以堪啊,更何况我问了那些数学好的,他们想推导出那一步也要想好久。后来换了一下同济大学版,发现同样的定理,同样的范围,就是理解起来容易了不少。果然好书和差一点的书差别真不少。所以我就在网上整理了一些好的数学书籍,等会儿x就贴到文后,以后慢慢补。

“技术分为术和道两种,具体的做事方法是术,做事的原理和原则是道。这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余。” ,然后吴军先生用搜索反作弊的例子漂亮的解释了这两种差别。我以前做过的项目里,如果出现没想过的情况,就加一个异常处理处理特殊情况,本来很简单的东西,愣是被我搞复杂了。现在想回来,那时候境界太低,连开始的本质和原理都没弄清楚,就埋头搞下去了,以后要多注意点。

我一向喜欢实用性强的方法和工具,在这书里我特别喜欢阿米特・辛格博士的那一章。吴军博士就用寥寥几页的描述中讲解了辛格博士的处理事情的方法和原则,先帮用户解决主要的问题,再决定要不要纠结在次要的部分上;要知道修改代码的所作所为,知其所以然;能用简单方法解决就用简单的,可读性很重要。

不过中间有两个部分没搞明白,最大熵模型和贝叶斯网络,没搞懂为什么能解决那些问题。贝叶斯网络还能稍微理解,少了马尔科夫链的线性约束,更自由;但最大熵模型真搞不懂为什么那么好用,以后继续研究。

总之这是一本很好的`书,推荐大家读一下。

篇7: 《数学之美》读后感

确切的来说,《数学之美》并不是一本书,它是谷歌黑板报中的一系列文章,介绍数学在信息检索和自然语言处理中的主导作用和奇妙应用,每一篇文章都不长,但小中见大,从看似高深的高科技中用通俗易懂的案例展示了数学之美,深深的吸引了我。

这一系列文章的作者是google公司的科学家吴军。他毕业于清华大学计算机系(本科)和电子工程系(硕士),并于1993-在清华任讲师。他于19起在美国约翰霍普金斯大学攻读博士,并于XX年获得计算机科学博士学位。在清华和约翰霍普金斯大学期间,吴军博士致力于语音识别、自然语言处理,特别是统计语言模型的研究。他曾获得1995年的全国人机语音智能接口会议的最佳论文奖和XX年eurospeech的最佳论文奖。

吴军博士于XX年加入google公司,现任google研究院资深研究员。到google不久,他和三个同事们开创了网络搜索反作弊的研究领域,并因此获得工程奖。XX年,他和两个同事共同成立了中日韩文搜索部门。吴军博士是当前google中日韩文搜索算法的主要设计者。在google其间,他领导了许多研发项目,包括许多与中文相关的产品和自然语言处理的项目,并得到了公司首席执行官埃里克.施密特的高度评价。吴军博士在国内外发表过数十篇论文并获得和申请了近十项美国和国际专利。他于XX年起,当选为约翰霍普金斯大学计算机系董事会董事。

正是他在信息检索与自然语言处理领域中的一系列工作,使他讲述了我所看到的内容-数学之美。

看了数学之美,立即联想到了金庸小说中的武林高人,总是把一套大多数人都会的入门功夫使得威力无比,击溃众多敌者。东西放在那,它的威力如何,并键在于使用者,武术如此,数学同样如此。

于我而言,语音视别是一类高科技,作为非专业人土,深觉高奥。但看完数学之美之后,顿感惊诧,原来如此深奥东西的解决方法自己也学过,并且理工科读过大学的人都学过,那就是统计学中的条件概率p(a/b),即b事件发生条件下a事件发生的概率。

如果s表示一连串特定顺序排列的词w1,w2,…,wn,换句话说,s可以表示某一个由一连串特定顺序排练的词而组成的一个有意义的句子。现在,机器对语言的识别从某种角度来说,就是想知道s在文本中出现的可能性,也就是数学上所说的s的概率用p(s)来表示。利用条件概率的公式,s这个序列出现的概率等于每一个词出现的概率相乘,于是p(s)可展开为:

p(s)=p(w1)p(w2|w1)p(w3|w1w2)…p(wn|w1w2…wn-1)

其中p(w1)表示第一个词w1出现的概率;p(w2|w1)是在已知第一个词的前提下,第二个词出现的概率;以次类推。不难看出,到了词wn,它的出现概率取决于它前面所有词。从计算上来看,各种可能性太多,无法实现。因此我们假定任意一个词wi的出现概率只同它前面的词wi-1有关(即马尔可夫假设),于是问题就变得很简单了。现在,s出现的概率就变为:

p(s)=p(w1)p(w2|w1)p(w3|w2)…p(wi|wi-1)…

(当然,也可以假设一个词又前面n-1个词决定,模型稍微复杂些。)

接下来的问题就是如何估计p(wi|wi-1)。现在有了大量机读文本后,这个问题变得很简单,只要数一数这对词(wi-1,wi)在统计的文本中出现了多少次,以及wi-1本身在同样的文本中前后相邻出现了多少次,然后用两个数一除就可以了,p(wi|wi-1)=p(wi-1,wi)/p(wi-1)。

也许很多人不相信用这么简单的数学模型能解决复杂的语音识别、机器翻译等问题。其实不光是常人,就连很多语言学家都曾质疑过这种方法的有效性,但事实证明,统计语言模型比任何已知的借助某种规则的解决方法都有效。比如在google的中英文自动翻译中,用的最重要的就是这个统计语言模型。去年美国标准局(nist)对所有的机器翻译系统进行了评测,google的系统是不仅是全世界最好的,而且高出所有基于规则的系统很多。

这就是数学的美妙之处了,它把一些复杂的问题变得如此的简单。

看到《数学之美》,在感叹数学的美妙与神奇之处时,自然而然联系到自己专业(地质工程而或岩土工程)中的数学应用。

现在找文献,搜索期刊一大堆基于数学的专业文献,灰色数学的、模糊数学的、非线性的、系统的,等等,这么多的数学的使用,促进了一大批的文章,但这些数学方法的应用究竟是发现了哪些问题?还是解决了实际问题吗?还是仅发了文章,满足了需求?现实是文章好发,用着难用,解决问题还得传统的方法,那么是这些数学方法不行,还是用的太肤浅,根本没发挥其威力来?如果没有发挥出威力来,那怎么用?怎么发挥?

篇8:数学之美读后感

看数学之美,悟技术之道

周旭龙

一、关于此书

数学之美

记得几年前看完了《浪潮之巅》之后,便知道了吴军老师还有另外一本非常出名的著作《数学之美》,但是一直没有列入计划阅读。直到我看完了《硅谷之谜》以及《智能时代》之后,便自己上网买了一本第二版的《数学之美》。正如李开复博士所说:“在我认识的顶尖研究员和工程师里,吴军博士是极少数具有强大叙事能力和对科技、信息领域的发展变化有很深的纵向洞察力,并能进行有效归纳总结的人之一。”,正是因为在前面几本书中我看到了吴军老师强大的“讲故事”的能力,他能用通俗易懂,深入浅出的语言将技术原理讲清楚,这就十分腻害了,在《数学之美》中他也再次展示了这一点。

最近除了阅读《数学之美》,还订阅了吴军老师的《硅谷来信》,每天在早上洗漱时听一封信,在睡觉前也会听一封信,借吴军老师之眼去看世界,也可以读到一流的科学家/工程师对于各种事件非常独特的见解,以丰富自己的眼界。在此,感谢之前Sobey公司的我的前老板刘总的推荐,我也将《硅谷来信》推荐给你们(可以利用你们的碎片时间来学习)。

二、看数学之美

Part 1 简单即是美的方法

这本书一共29章,主要介绍了这些数学方法:统计方法、统计语言模型、中文信息处理、隐含马尔科夫模型、布尔代数、图论、网页排名技术、信息论、动态规划、余弦定理、矩阵运算、信息指纹、密码学、搜索技术、数学模型、最大熵模型、拼音输入法、贝叶斯网络、句法分析、维特比算法、各个击破算法等。

例如,在统计语言模型一章中,我们会发现原来使用简单的数学模型就可以解决复杂的语音识别、机器翻译等问题,但是使用很复杂的文法规则和人工智能却做不到,而这些仅仅需要我们了解概率论和统计学的知识就可以应用到工程中。(当然,最先提出将统计学方法应用到计算机应用工程问题的先驱们是真的值得我们为其鼓掌的!)此外,简单的布尔代数就是支撑搜索引擎索引的数学基础,一个漂亮的pagerank矩阵乘法迭代加上一个TF-IDF公式,就可以大程度地改善搜索结果的质量,()无一不体现出简单即是美的特点,而数学模型刚好符合这个要求。

又如,在信息的度量和作用一章,我们再次回顾了信息熵的重要性,这也是吴军老师一直在重复提及的信息论(吴军老师喜欢站在信息论的高度看问题,而不只是看到片面的表象)。一个事物内部会存在随机性,也就是不确定性,而从外部消除这个不确定唯一的办法是引入信息,而需要引入的信息量取决于这个不确定的大小。就像我们在追一个女生的时候,很多时候往往不是一拍即合,一见钟情的,只有互相表达的信息(即引入信息)足够了,才会消除各自对于对方的顾虑。等到引入的信息量消除了处在两个人之间的屏障,那么我们就可以跟对方告白宣告在一起了。

本书中介绍的所有的这些方法在吴军老师的笔下都只为了突出一句话:数学的精彩之处就在于简单的模型可以干大事。

PS:对于书中提到的大部分的数学模型都有其开源的代码实现,而我们这些工程人员只需要使用这些开源工具到自己的实际项目中即可,么么哒!

Part 2 传道授业的专家们

这本书除了在高层讲述数学方法在计算机应用(主要是语音识别等互联网应用领域)的基本原理(吴军老师称其为“道”)外,还穿插了一些传道的专家们的故事,包括:贾里尼克、辛格、马库斯以及维特比等。

比如,吴军老师的博士生导师贾里尼克教授。贾里尼克教授少年坎坷,也并非开始就投身到自然语言方面的研究,关键是他的思想和他的道。贾里克尼教授治学严谨、用心对待自己的学生,对于学生的教导,教授告诉你最多的是“什么方法不好”。这让我回想起当年看李开复博士的《世界因你而不同》一书中听到的一句话(李开复博士的导师罗迪教授给李开复讲的一句话)“我不赞同你,但我支持你”,于是也就有了李开复在语音识别领域的一鸣惊人的成就。贾里尼克的一生富于传奇色彩,先在哈佛大学、康奈尔大学教书,接着在IBM任职,之后又去约翰-霍普金斯大学教书。他的贡献主要有如下几个:第一,提出了统计语言识别的框架结构;第二,共同提出了BCJR算法;第三,领导建立了世界著名的CLSP实验室。

又如,辛格博士现任主管Google搜索的高级副总裁,并被学术界公认是当今最权威的网络搜索专家。他奉行简单的哲学,并一直坚持寻找简单有效的解决方案。令我印象最深刻的就在于,吴军博士在设计分类器时,依照吴军力求完美的态度,应该还会花很多时间去尽善尽美,但是被辛格博士止住了,“在工程上简单实用的方法最好”。这种做事情的哲学其实非常值得我们借鉴,即先帮助用户解决80%的问题,再慢慢解决剩下的20%的问题,是在工业界成功地秘诀之一。许多失败并不是因为人不优秀,而是做事情的方法不对,一开始追求大而全的解决方案,之后长时间不能完成,最后不了了之。在我们的日常工作中也是一样,在项目开发设计中,很多人不管业务场景和技术要求,一上来就这种架构那种模式,往往不考虑到底这种设计是不是大牛拉小车,最后虽然解决了问题但是交付时间被延后,既让用户不满意也让部门不满意。

三、悟技术之道

吴军老师在《数学之美》中提到:“这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余”。回到我们日常的开发工作中,作为IT工程师,程序员,要跟上技术的大潮流,需要学习的技术太多太多,如果一味地只为去追技术的脚步,那么我们也会很累很累,而且可能会是花了80%的时间却只得到了20%的效果,更别谈期望值最大化了,或许根本就达不到你期望值的60%。相反,比如cnblogs(博客园)在招聘工程师一直提到的“3大原理,2个协议,1种结构”(计算机原理、操作系统原理、编译原理、TCP/IP协议、HTTP协议、数据结构)却是没有怎么变化的(甚至是短时间不会变化的),而这些东西恰好是在这个浮躁的社会,我们这些所谓的计算机系的毕业生,所谓的科班毕业生所缺乏的(因为大部分人都没有在大学期间将这些东西真正地学好,而只是为了所谓的几个学分去图书馆奋战一两个周末而已)。站在高处向下看,也许我们一直看不到底,但是站在底处却是可以看见底的,这也是我为什么在毕业之后还要去重新温故操作系统原理和数据结构等科目的原因。

愿我们能够在底层站的更稳后,能够以一种更加全局的视角去看待上层建筑,感悟技术之道!

篇9:数学之美读后感

《数学之美》,读来确实有感:数学美。

――邓毅雄

吴军博士的《数学之美》

读来确实有感:数学美。

――邓毅雄

这本书,主要涉及自然语言处理、网络搜索引擎等问题,介绍解决问题的数学方法,这些方法基本不属高大上,用到的数学知识并不复杂,有的甚至属中等数学,如余弦定理。像较好解决复杂的自然语言识别与翻译的统计方法,只是条件概率与马尔可夫链的应用;解决网页排名的PageRank算法,其核心是数学的n维向量和数值计算中的迭代法;密码学中的公开密钥方法,仅仅是较大素数的乘、除运算而已,等等。复杂的现实问题,简单的数学方法,彰显数学之韵味和数学之美。

数学之美

数学之美,源自数学的概括与抽象。而数学的抽象,又恰恰是许多人难以接受数学之梗阻。所以,一般来说,能够欣赏到数学之美,必有一定的数学基础。不过,吴军的《数学之美》,语言通俗,略沉心境,顺利读懂其要义,应该是不难的事。有这种说法,真正的大师,能够将复杂的东西,通俗表达。这话我不尽信,但也确实佩服那些把数学理论通俗易懂、形象生动描述的专家,读了《数学之美》,觉得吴军博士不错。

人类发明了许许多多的语言,如自然语言(包括各国各民族的语言)、音乐、绘画等,数学也是一种语言。读懂各种语言,需要下一定功夫,只是有些语言本身比较通俗,功夫不用太深,但像数学这样的语言,数字化,符号化,抽象化,逻辑化,难言大众望而生畏,也着实不少人望而却步。如果我们的数学老师们,能够将这些“化”都“简化”,或者尽量简化些,那是不是有更多的人有迎难而上的勇气呢?也许吧!然而,毕竟数学除了作为工具性角色,还要培养和训练人的思维,一味地简化和通俗,那种逻辑思维的特征要素,失之亦可惜呀。前些日,读了保罗.洛克哈特(美国)的《度量:一首献给数学的情歌》,其对形状和运动的度量叙述,非常通俗,给人启发,但对我这数学背景出身的人来说,因思想深处固守那份对抽象性和逻辑性的呆痴,而总感觉其味不够,犹如爱好辣味的江西人,怕不辣二无味。

五世纪著名数学评论家普洛克拉斯说:“哪里有数,那里就有美”。我国著名数学家华罗庚说:“就数学本身而言,是壮丽多彩、千姿百态、引人入胜的……认为数学枯燥乏味的人,只是看到了数学的严谨性,而没有体会出数学的内在美。”数学之美表现丰富,如美的形式符号、美的公式、美的曲线、美的曲面、美的证明、美的方法、美的理论等。从内容来说,数学之美有可分为结构美、语言美与方法美,数学也有简洁之美、对称之美、和谐之美。罗素说,数学的美,“是一种冷而严肃的美”。所以,欣赏数学的美,是需要一定能力和技巧的。

数学的应用,也是数学美的特征。科学发展到现在,数学应用无处不在,数学应用的方法很多。一个数学的抽象,包含了无穷的客观现实。解决问题,尽量方法简单,能简不繁,是一种原则。数学应用之美,就在于简单,在于巧妙,在于效奇。

作者:邓毅雄

篇10: 数学之美读后感

看到吴军的另一本书《数学之美》,激起了很深的兴趣,所以很快把书看完了,普及了很多基础的知识的同时也启发了很多想法,感觉很爽。

我自己在交大学的是工科(虽然没怎么上过课),小学、初中、高中都是一路参加数学竞赛,名次都还不错,也因此没有参加中考、高考,一路保送,自己对数学有很深的感情,同时女朋友大学也是数学系,有点后悔的大学选了个并不感兴趣的专业(交大当时允许我随便选专业,我没有跟父母商量自己选了船舶制造)。看这本书的过程中找到了很多高中在看竞赛书的感觉,里面提到的很多概率论(不等式)、图论、数论的知识是高中数学联赛复试的重点,高中的时候已经研究的很深了,不过大学荒废了之后也忘得差不多了,书中提到的很多定理还很有亲切感

书名叫做《数学之美》,显得有些太大,毕竟更多的是吴军在google做搜索相关工作用到的数学模型的介绍与总结,提到的数学部分大多集中在概率论、图论、数论领域,所以书名太大了,可能hax说得对,也许是出版社为了卖书取得名字

不得不说吴军是一个大家,文字中能够透露出大家的气势,书中不断的穿插着各种历史上的大科学家以及科技领域的大家的小故事甚至八卦,从文字中非常能够感受到吴军是一个和他们一个层次的人(即使他自己会自谦说是一个二流的工程师之类)

书中具体的模型就不介绍了,说几点我学到的知识(仅仅皮毛),能列出来的都是看完还有点印象的:

1、在互联网的世界中,信息是如何量化的,信息熵是怎么回事?有啥用?

2、搜索领域中,语言是如何统计的,尤其是如何通过概率模型进行分词

3、搜索引擎是如何工作的―网络爬虫是怎么回事儿

4、PageRank是怎么回事?为了解决什么问题?

5、密码与解密领域的数学模型,尤其提到的二战时候的各种解密的趣事儿,提到的电视剧《暗算》打算抽空看下

6、拼音输入法的数学模型

7、文本自动分类的模型

……

看完之后最大的感受就是:

1、数学模型巨大作用,推动着新技术的发展

2、攻城师是一个伟大的职业,能够运用这些知识转化为生产力,非常牛叉

3、书中提到了很多数学模型都是在不断的进化、改良、升级,也就是说有人不断的在做优化,会有不断更好的模型、更新的技术出现,跟得上技术的发展可能也是比较重要的,否则很多人一直在做某一点上的持续优化就没有意义了。

但同时技术很大的作用是用来解决实际问题的,书中提到的各个数学模型、各种方法都是为了解决人们的需求或者业务的需求,毕竟公司不是科学研究所,所以追求通过技术直接解决用户需求或者做成易用的工具给业务人员、运营人员来间接解决用户需求是挺重要的,可能不是技术人员觉得做到80分就可以了,而是用户、使用工具的人觉得做到80分是一个重要的衡量

提到“工具”,想到赵赵说过的一句话:“不好用就等于没有”,可能就是这个点,同时运用工具的人必须好好的运用,如果用不好甚至不用就太对不起技术了。

篇11: 数学之美读后感

第8章里的“索引”,作者讲到谷歌面试产品经理的一道题目:如何向你的奶奶解释搜索引擎。关于这个问题,好的回答据说是用图书馆的索引卡片做类比。

我奶奶是个文盲,一生为农,日出而作,日落而息。她很少看电视,更别说图书馆。所以用图书馆的例子,对我们来说,很生动;对她来说,很生涩。

我们村的田地是按照地形、土质和流水等来划分的,计有一等地、二等地和三等地。一般情况下,一等地用来种水稻,二等地用来种菜,三等地用来种水果。

所以当我奶奶想要给我摘桔子的时候,她肯定不会从一等地或者二等地一块地一块地找过来,而是直接跑到三等地(一般就是山上)。

像这样的索引,是基于脑子里的“数据库”,因为田地不会很多,多了也来不及种,所以跟布尔代数没什么关系。但是这样解释,我奶奶就会大概明白了。我奶奶生前一次电脑也没用过,跟她解释这些,唯一的意义是,她会觉得我没有敷衍她,这会使她欣慰――如果有机会解释的话。

杨小凯曾经说,如果张五常多加注重使用数学模型,那诺奖也许就拿下了。张五常对此不以为然,反以为傲,自诩当今世上只有科斯、阿尔钦和他才敢只用文字,不借助数学模型就在经济学界占有一席之地。

当然,张五常也不是彻底否定数学的作用,他认为能够用文字解释的经济学原理,不必使用数学对其复杂化。

数学在信息学和经济学里都有广泛应用,但是在信息科学方面,对数学作用大小的争论就没有经济学那么大了。

我们常说搜索引擎的竞价广告,就可能经历到第三方公司,通常他们宣传自己是谷歌或者别的搜索引擎公司的代理商,然后通过不正当手段为客户提高网页的排名。谷歌在消除网络作弊方面做了很多努力,通过修改排序算法来为搜索者提供更加准确实效的信息。

“作弊的本质是在网页排名信号中加入噪音,因此反作弊的关键是去噪音。沿着这个思路可以从根本上提高搜索算法抗作弊的能力。”我们公司就是吃了这个亏,交了不少钱给第三方公司,结果算法一变,关键词的排名从前三下降到前三页没影。

社交搜索正在雄起,但是如果想要在传统的搜索引擎中占据有利排名,我想,第三方公司的技术水平是很关键的。

大学专业课里,数电总是要比模电简单不少。

自然界里大部分的信号都属于模拟信号。所谓模拟信号,是指时间和数值上都是连续变化的信号。在实际电路中,模/数转换是一个很重要的过程,将预处理的模拟信号经过模/数变换为数字信号,然后进行数字信号处理。而数字化处理有很多优点,比如功能强大、抗干扰能力强、易集成化等。

简而言之,如果没有数学,就没有数字信号处理的概念,也就无法进行信号的传输,而数字信号传输在大规模的集成电路里是必不可少的,这是通信成功的基本要求。

之前看到有人说如果高中看这本书,也许数学就是另一番天地,会有所突破。我不觉得,如果高中看这种书,我想,大多数人还是会对数学更加望而却步。本书更适合通信电子这些专业的`学生,在学习专业课的时候辅助阅读,对理解通信原理、数电模电等都有更形象生动的想法。

篇12: 数学之美读后感

《数学之美》,一个从事多年工作的谷歌研究员眼中的数学。令我大饱眼福的是,大学里面的数学知识竟能如此广泛运用到了计算机行业中。

在语音识别、翻译,还有密码学领域,有着许多基于概率统计的模型和思想。当然,贝叶斯公式是基础,应用到隐含马尔科夫链模型,神经网络模型。

在搜索中,一些相关性的计算,无不用到了概率的知识。在新闻分类中,用到了一些有关矩阵特征值、相似对角化的知识。当然,在图像处理方面,矩阵变换可谓是无处不在。另外,在识别方面,有一些通信模型,涉及到了信道、误码率、信息熵。

最近刚开学也没什么事,所以就想随便找几本书看一下,但最好别是那种太艰深晦涩的书。8月份一直到现在,吴军写的这本5月出版的《数学之美》一直盘踞京东、亚马逊等各大网上商城科技类图书的榜首,当然,还有早些时候出版的《浪潮之巅》也排在很靠前的位置。心想市场的力量应该能帮我挑出好书吧,于是就从图书馆借了一本来,一直到今天晚上把它给看完了。

因此想写一点东西来总结、反思一下,反正刚开完班会也没什么事干。

写在前面的建议:如果你不讨厌数学的话,强烈推荐这本书,网上也可以下到电子版,不过阅读感觉上还是很不一样的。

废话就不多说了,《数学之美》其实是一本科普类的读物,所面向的是接受过普通高等教育的人,完全不需要在特定领域有很深的造诣就可以看懂,大概懂一点线性代数、概率统计、组合数学、信息论、计算机算法、模式识别最好(虽然列举了这么多,其实有些不懂也没关系……),所以尤其适合信科的人看。内容大部分是和人工智能、计算机相关的,这并非我所学的专业,但作者比较擅长将看似复杂的原理用简明的语言表达出来,所以可读性还是很好的。

吴军是清华大学毕业的,之前任职于Google,后来到了腾讯,这些文章都是发表在Google黑板报上的,后来经过了重写,所以网上下载的和书本内容有所差异。由于吴军本人是研究自然语言处理和语音识别的,所以统计语言模型的东西可能会多一点,不过我觉得这丝毫不妨碍全书数学之美的展现……感觉收获还是挺多的,知识上的有一些,但更多还是思维方式上的。作者举了很多例子试图让人明白很多看似复杂的高科技背后,基本原理其实是出乎意料简单的(当然,必须承认第一个想到这些方法的人还是非常了不起的……)。比如高准确率的机器翻译,看上去好像是计算机能够理解各国语言,隐藏在背后的却是很多具有大学理科学历的人都非常清楚的统计模型和概率模型;再比如拼音输入法的数学原理,早期的研究主要集中在缩短平均编码长度,比如曾经流行一时的五笔输入法,而现今真正实用的输入法却是有很多信息冗余、编码长度比较长的拼音输入法,作者从信息论和市场的角度做了简单的阐述;又比如新闻的自动分类,许多非IT领域的人可能会认为计算机可以读懂新闻并进行分类,而实际上只是特征向量的抽取、多维空间中向量夹角的计算,非常非常简单,但凡学过一点线性代数的人绝对是一看就懂的……当然,完美的实现还需要考虑很多细节和现实的情况,但这并不是这本书所关注的地方,数学之美在于其简洁而不是繁琐。

除了对于具体信息技术的剖析之外,作者还花了很大篇幅来讲一些杰出人士的成长过程,特别是把这些人的成长经历和中国学生的成长经历作对比。虽然作者并没有明说,但字里行间多少流露出对于中国高等教育以及很多中国企业的批评,一是教育的功利性,缺乏宽松的独立思考的环境,即使学了一堆理论也难有用武之地,自然也就缺乏创新性的成果;二是中国企业的短视,大部分都不舍得在新框架开发上投资,而是坐享学术界和国外企业的研究成果。

总结一下呢,《数学之美》事实上不能带给你编程能力的提升,也没法让人的数学水平有显着的提升,但它在很大程度上让你跳出教科书式的繁琐细节的束缚,能够从更宏观的角度来思考信息世界背后的数学引擎的运行原理,让人明白看似很高级、复杂的东西背后其实并不如我们所想象的那样复杂,而我们所学的“枯燥”的数学真的可以“四两拨千斤”,改变亿万人的生活。

篇13: 数学之美读后感

前一阵子因兴趣研究CMUSphinx这套库的应用不得要领,就去查看了下一些语音识别的基本原理的文章,偶然碰到了数学之美。其实浪潮之巅也是因此开始看的、结果先一步看完了,毕竟一本历史书,一本介绍数学和语言处理的,难度不同

说实话,因为初中高中荒废了太多时间,我的英文和数学基础比较差,我大学的数学都是勉强修过的。一直以来数学对我是一个很恐怖的学科,也不知道为什么计算机专业对数学要求比较高。我个人就是数学分数很低,但是专业课学的还不错,唯一好点的数学科目就是离散数学吧,另外的工科数学分析和高等代数都是惨不忍睹的

看完这本书后,我发现我还真是低估了数学的作用,一个复杂的语言识别过程,用统计语言模型竟然用那么简单的数学模型就解决了,这对我的冲击很大。另一个对我影响比较大的就是余弦定理和新闻的分类。以前那些各种三角函数的变换、三角函数,各种向量,各种空间图形在我印象中就只能用于画设计图,或者搞空间物理化学等基础学科的应用上,想着“这种东西和计算机编程有什么关系?要计算角度,库里不都提供了吗?”,哪成想到改变一下思路,改变一下方法,就简单的把那么复杂的分裂问题给解决了。现在想想我当初想法还真是幼稚啊,可惜覆水难收,过去的时间已经回不来了,但至少我现在明白了数学的重要性,总能想办法弥补的。

不得不说国内的教科书还真是太死板了。很多书上,先不说没讲应用领域和这个能干吗,有些教科书连推导过程也没说明白。像我大学时候的那几本高代高数的教科书,在某一步关键的过程写一句“显而易见”,然后就莫名其妙的出现了结果,这让我们基础差的人情何以堪啊,更何况我问了那些数学好的,他们想推导出那一步也要想好久。后来换了一下同济大学版,发现同样的定理,同样的范围,就是理解起来容易了不少。果然好书和差一点的书差别真不少。所以我就在网上整理了一些好的数学书籍,等会儿x就贴到文后,以后慢慢补。

”技术分为术和道两种,具体的做事方法是术,做事的原理和原则是道。这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余。” ,然后吴军先生用搜索反作弊的例子漂亮的解释了这两种差别。我以前做过的项目里,如果出现没想过的情况,就加一个异常处理处理特殊情况,本来很简单的东西,愣是被我搞复杂了。现在想回来,那时候境界太低,连开始的本质和原理都没弄清楚,就埋头搞下去了,以后要多注意点。

我一向喜欢实用性强的方法和工具,在这书里我特别喜欢阿米特・辛格博士的那一章。吴军博士就用寥寥几页的描述中讲解了辛格博士的处理事情的方法和原则,先帮用户解决主要的问题,再决定要不要纠结在次要的部分上;要知道修改代码的所作所为,知其所以然;能用简单方法解决就用简单的,可读性很重要。

不过中间有两个部分没搞明白,最大熵模型和贝叶斯网络,没搞懂为什么能解决那些问题。贝叶斯网络还能稍微理解,少了马尔科夫链的线性约束,更自由;但最大熵模型真搞不懂为什么那么好用,以后继续研究。

总之这是一本很好的书,推荐大家读一下。

篇14: 数学之美读后感

本书介绍了Google产品中涉及的自然语言处理、统计语言模型、中文分词、信息度量、拼音输入法、搜索引擎、网页排名、密码学等内容背后的数学原理。让我们看到了布尔代数、离散数学、统计学、矩阵计算、马尔科夫链等似曾相识的内容在实际生活中的应用。相比于其他数学题材书籍,吴军老师把抽象、深奥的数学方法解释得通俗易懂,书中同时引用了诸多的历史典故和人物介绍,给人以很多启发,也让人由衷感叹数学的简洁和强大。

虽是数据专业毕业,但是才疏学浅,无力对数学的美进行阐述。仅就书中两个比较喜欢的地方发表一点不成熟的见解,与诸位共勉。

其一,在讲Google的搜素引擎反作弊时谈到做事情的两种境界“道”和“术”,术就是具体的做事方法,而道则是隐藏在问题背后的动机和本质。在术这个层面解决问题要付出更多的努力,有点类似于我们常说的“头疼医头,脚疼医脚”,暂时不疼了,过几天复发了,再去医治,如此往复,无法从根本上解决;而只有找到了致病原因,才能做到药到病除,根本治愈。本人之前参与过行内月终自动核对的研发,月终核对初期数据的不一致性只能靠数百业务人员人工核对数据差异,然后修改数据,每月1日都要加班加点,工作量很大,这是从术上解决问题。后来找到了产生差异的原因是会计核算时的利息调整造成的,把这些数据接过来进行相应冲减后差异就消失了,业务人员也不用来加班了,这才是从道上解决问题。

其二,是在做中文网页排名时提到的从业界成功的秘诀之一:“先帮助用户解决80%的问题,再慢慢解决剩下的20%的问题。许多时候做事失败,不是因为人不够优秀,而是做事的方法不对。一开始追求大而全的解决方案,之后长时间不能完成,最后不了了之”。我们在做项目时也是一样,业务有时要的功能非常急,可能有些功能也实现不了(比如系统响应时间长、查询明细不能支持省行等)。这时我们就要将焦点关注在那些可以实现的80%的功能上,哪怕刚刚上线的系统界面丑点,操作复杂点,反应速度慢点,但是至少业务有可用的系统,剩下时间再去优化那剩下的20%。这样可以帮助我行抢占先机,在与同行业的竞争中取得主动。如果等待我们把所有的细节都搞清楚再动手开发,力求完美,那么很可能系统能够上线的时候业务已经不需要了。

数学之美,也就是简单之美。希望大家能够喜欢数学,喜欢数学之美。

篇15: 数学之美读后感

我在想,为什么我们要学习数学?也许这个问题成年人有一万个答案,可是当我们第一次走进教室,学习数学的时候,大概率还是个孩子,你怎么跟一个孩子解释为什么要学习数学呢?我把这个问题抛给了一个朋友,他说:“为了提高思维逻辑能力,这是我初中老师在第一节数学课上告诉我们的”。或者一位5岁的小朋友又会问:“什么是逻辑能力呢?”

也许从出生第一天,我们就一直在被动的接收一些东西,父母的劝导,老师的传授,可5岁的孩子还是会把玩具散落一地,6岁的孩子仍然会因为父母不给买玩具而嗷嗷大哭,无论你怎么劝导一个人,怎么劝诫一个人,他可能仍然会犯你认为会出现的错误。我记得有位教育专家这么说:“你告诉宝宝他把玩具弄坏了,就等于丢了10个棒棒糖”,从此以后这个宝宝可能会更加珍惜玩具。这个方法很简单,但是貌似最有效。数学是什么?数学不就是把复杂的东西简单化么?

现在我们再回答前面的问题:为什么我要学习数学?我们可以这么跟5岁的小朋友说:“妈妈给你10元钱,让你买酱油,酱油7元、棒棒糖1元一个,剩下的钱你可以买几个棒棒糖?”或许想吃棒棒糖的就会苦思冥想一番,或许未来妈妈真的给他10元钱去买酱油,结果回来就变成了一瓶酱油和3个棒棒糖。或者再过一段时间,这位小朋友会选择6元的酱油,因为可以获得4个棒棒糖了。他这么计算着:7+3和6+4都可以等于10,那么如果要必须买酱油的情况下,1+9也可以等于10。我们都知道也有1元的袋装酱油,于是9个棒棒糖到手了。任何知识的魅力都在于自我的发现,只有你对它产生了无限的兴趣,你就会不断的发现它的美,《数学之美》也可以变成《物理之美》。

有些人会说,上面的例子是利益驱动型,不是兴趣驱动型,对于一个孩子来说,你能指望他向成人那样:“我需要的不是物质世界,我需要的是精神世界?”。5岁宝宝最喜欢做得事情就是在吃和玩上面,请问,成年人不也是如此么?这就是天性。只不过成年人的自控能力足够大罢了。

我们回到书本上,这本书是否合适自己?如果没有专业的数学知识,很难读懂。但是它又有着无限的魅力,让你不自觉的读下去,为什么?因为“数学之美”,虽然大多数人看不懂里面的公式,但是能够明白数学能解决的问题:概率统计学能够解决自然语言处理、布尔代数能解决搜索引擎的问题、有限状态机和动态规划能解决地图问题、向量+特征向量+余弦定理能解决自动新闻分类问题、最大熵模型解决金融问题,看着看着我就莫名的产生了一种想要学习算法的冲动,这不就是本书的意义所在么?

【数学之美作文】相关文章:

1.品格之美作文

2.起点之美作文

3.理想之美作文

4.青岛之美作文

5.欣赏之美作文

6.天之美作文

7.园之美作文

8.初秋之美作文

9.作文:香港之美

10.西湖之美作文

下载word文档
《数学之美作文.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部