初一数学知识点总结202
“峥泗躞”通过精心收集,向本站投稿了14篇初一数学知识点总结202,下面就是小编给大家整理后的初一数学知识点总结202,希望您能喜欢!
篇1: 数学初一知识点总结
一、一元一次不等式的解法:
一元一次不等式的解法与一元一次方程的解法类似,其步骤为:
1、去分母;
2、去括号;
3、移项;
4、合并同类项;
5、系数化为1
二、不等式的基本性质:
1、不等式的两边都加上(或减去)同一个整式,不等号的方向不变;
2、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;
3、不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
三、不等式的解:
能使不等式成立的未知数的值,叫做不等式的解。
四、不等式的解集:
一个含有未知数的不等式的所有解,组成这个不等式的解集。
五、解不等式的依据不等式的基本性质:
性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,
性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,
性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,
常见考法
(1)考查一元一次不等式的解法;
(2)考查不等式的性质。
误区提醒
忽略不等号变向问题。
初中数学重点知识点归纳
有理数乘法的运算律
1、乘法的交换律:ab=ba;
2、乘法的结合律:(ab)c=a(bc);
3、乘法的分配律:a(b+c)=ab+ac
单项式
只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的。
多项式
1、几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。
提高数学思维的方法
转化思维
转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、清晰。
创新思维
创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,得出与众不同的解
要培养质疑的习惯
在家庭教育中,家长要经常引导孩子主动提问,学会质疑、反省,并逐步养成习惯。
在孩子放学回家后,让孩子回顾当天所学的知识:老师如何讲解的,同学是如何回答的?当孩子回答出来之后,接着追问:“为什么?”“你是怎样想的?”启发孩子讲出思维的过程并尽量让他自己作出评价。
有时,可以故意制造一些错误让孩子去发现、评价、思考。通过这样的训练,孩子会在思维上逐步形成独立见解,养成一种质疑的习惯。
篇2: 数学初一知识点总结
知识点、概念总结
1.不等式:用符号“<”,“>”,“≤”,“≥”表示大小关系的式子叫做不等式。
2.不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号“>”,“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)“≥”,“≤”连接的不等式称为非严格不等式,或称广义不等式。
3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)
(2)如果不等式F(x) (3)如果不等式F(x) 7.不等式的性质: (1)如果x>y,那么yy;(对称性) (2)如果x>y,y>z;那么x>z;(传递性) (3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则) (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z (6)如果x>y,m>n,那么x+m>y+n(充分不必要条件) (7)如果x>y>0,m>n>0,那么xm>yn (8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数) 8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。 9.解一元一次不等式的一般顺序: (1)去分母(运用不等式性质2、3) (2)去括号 (3)移项(运用不等式性质1) (4)合并同类项 (5)将未知数的系数化为1(运用不等式性质2、3) (6)有些时候需要在数轴上表示不等式的解集 10.一元一次不等式与一次函数的综合运用: 一般先求出函数表达式,再化简不等式求解。 11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成 了一个一元一次不等式组。 12.解一元一次不等式组的步骤: (1)求出每个不等式的解集; (2)求出每个不等式的解集的公共部分;(一般利用数轴) (3)用代数符号语言来表示公共部分。(也可以说成是下结论) 13.解不等式的诀窍 (1)大于大于取大的(大大大); 例如:X>-1,X>2,不等式组的解集是X>2 (2)小于小于取小的(小小小); 例如:X<-4,X<-6,不等式组的解集是X<-6 (3)大于小于交叉取中间; (4)无公共部分分开无解了; 14.解不等式组的口诀 (1)同大取大 例如,x>2,x>3,不等式组的解集是X>3 (2)同小取小 例如,x<2,x<3,不等式组的解集是X<2 (3)大小小大中间找 例如,x<2,x>1,不等式组的解集是1 (4)大大小小不用找 例如,x<2,x>3,不等式组无解 15.应用不等式组解决实际问题的步骤 (1)审清题意 (2)设未知数,根据所设未知数列出不等式组 (3)解不等式组 (4)由不等式组的解确立实际问题的解 (5)作答 16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。 第一章有理数 1、大于0的数是正数。 2、有理数分类:正有理数、0、负有理数。 3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数) 4、规定了原点,单位长度,正方向的直线称为数轴。 5、数的大小比较: ①正数大于0,0大于负数,正数大于负数。 ②两个负数比较,绝对值大的反而小。 6、只有符号不同的两个数称互为相反数。 7、若a+b=0,则a,b互为相反数 8、表示数a的点到原点的距离称为数a的绝对值 9、绝对值的三句:正数的绝对值是它本身, 负数的绝对值是它的相反数, 0的绝对值是0。 10、有理数的计算:先算符号、再算数值。 11、加减: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О) 12、乘除:同号得正,异号的负 13、乘方:表示n个相同因数的乘积。 14、负数的奇次幂是负数,负数的偶次幂是正数。 15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。 16、科学计数法:用ax10n 表示一个数。(其中a是整数数位只有一位的数) 17、左边第一个非零的数字起,所有的数字都是有效数字。 【知识梳理】 1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。 2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。 3.倒数:若两个数的积等于1,则这两个数互为倒数。 4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0; 几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离. 5.科学记数法:,其中。 6.实数大小的比较:利用法则比较大小;利用数轴比较大小。 7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。 初一数学二单元知识点归纳 (一)正负数 1.正数:大于0的数。 2.负数:小于0的数。 3.0即不是正数也不是负数。 4.正数大于0,负数小于0,正数大于负数。 (二)有理数 1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π) 2.整数:正整数、0、负整数,统称整数。 3.分数:正分数、负分数。 (三)数轴 1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。) 2.数轴的三要素:原点、正方向、单位长度。 3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。 4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。 (四)有理数的加减法 1.先定符号,再算绝对值。 2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。 3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。 4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5.a?b=a+(?b)减去一个数,等于加这个数的相反数。 (五)有理数乘法(先定积的符号,再定积的大小) 1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。 2.乘积是1的两个数互为倒数。 3.乘法交换律:ab=ba 4.乘法结合律:(ab)c=a(bc) 5.乘法分配律:a(b+c)=ab+ac (六)有理数除法 1.先将除法化成乘法,然后定符号,最后求结果。 2.除以一个不等于0的数,等于乘这个数的倒数。 3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(七)乘方1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。3.同底数幂相乘,底不变,指数相加。 4.同底数幂相除,底不变,指数相减。 (八)有理数的加减乘除混合运算法则 1.先乘方,再乘除,最后加减。 2.同级运算,从左到右进行。 3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。 (九)科学记数法、近似数、有效数字。 有理数加法法则 1、同号两数相加,取相同的符号,并把绝对值相加; 2、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; 3、一个数与0相加,仍得这个数。 有理数加法的运算律 1、加法的交换律:a+b=b+a; 2、加法的结合律:(a+b)+c=a+(b+c) 有理数减法法则 减去一个数,等于加上这个数的相反数;即a—b=a+(—b) 有理数乘法法则 1、两数相乘,同号为正,异号为负,并把绝对值相乘; 2、任何数同零相乘都得零; 3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。 5.1.1相交线 有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。 两条直线相交有4对邻补角。 有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。 两条直线相交,有2对对顶角。 对顶角相等。 5.1.2 两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 注意:⑴垂线是一条直线。 ⑵具有垂直关系的两条直线所成的4个角都是90。 ⑶垂直是相交的特殊情况。 ⑷垂直的记法:ab,ABCD。 画已知直线的垂线有无数条。 过一点有且只有一条直线与已知直线垂直。 连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 5.2平行线 5.2.1平行线 在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。 在同一平面内两条直线的关系只有两种:相交或平行。 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 5.2.2直线平行的条件 两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。 两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。 两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。 判定两条直线平行的方法: 方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。 方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。 方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。 5.3平行线的性质 平行线具有性质: 性质1 两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。 性质2 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。 性质3 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。 同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。 判断一件事情的语句叫做命题。 5.4平移 ⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。 ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。 图形的这种移动,叫做平移变换,简称平移。 填空题答题技巧 要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。 对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。 解答题答题技巧 (1)仔细审题。注意题目中的关键词,准确理解考题要求。 (2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。 (3)给出结论。注意分类讨论的问题,最后要归纳结论。 (4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。 1.4 有理数的乘除法 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。 乘积是1的两个数互为倒数。 有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。 负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。 把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。 从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。 上面内容是初中数学有理数的乘除法知识点总结,想必大家都已经做好笔记了,接下来还有更详细的初中数学知识点尽在哦,希望同学们关注了。 初中数学知识点总结:平面直角坐标系 下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。 平面直角坐标系 平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。 平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合 三个规定: ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向 ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。 ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。 相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。 初中数学知识点:平面直角坐标系的构成 对于平面直角坐标系的构成内容,下面我们一起来学习哦。 平面直角坐标系的构成 在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。 通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。 初中数学知识点:点的坐标的性质 下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。 点的坐标的性质 建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。 对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。 一个点在不同的象限或坐标轴上,点的坐标不一样。 一、同底数幂的乘法 (m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点: a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式; b)指数是1时,不要误以为没有指数; c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加; 二、幂的乘方与积的乘方 三、同底数幂的除法 (1)运用法则的前提是底数相同,只有底数相同,才能用此法则 (2)底数可以是具体的数,也可以是单项式或多项式 (3)指数相减指的是被除式的指数减去除式的指数,要求差不为负 四、整式的乘法 1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。 如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。 2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。 图形的初步认识 一、立体图形与平面图形 1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。 2、长方形、正方形、三角形、圆等都是平面图形。 3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。 二、点和线 1、经过两点有一条直线,并且只有一条直线。 2、两点之间线段最短。 3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。 4、把线段向一方无限延伸所形成的图形叫做射线。 事物变化趋势的描述:对事物变化趋势的描述一般有两种: 1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大)); 2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小). 注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等. 估计(或者估算)对事物的估计(或者估算)有三种: 1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等; 2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值; 3.利用关系式:首先求出关系式,然后直接代入求值即可. 初一数学知识点总结 本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。在此基础上,认识一些简单的平面图形直线、射线、线段和角。 一、目标与要求 1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。 2.经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力。 3.积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。 二、知识框架 三、难点 立体图形与平面图形之间的转化是难点; 探索点、线、面、体运动变化后形成的图形是难点; 画一条线段等于已知线段的尺规作图方法,正确比较两条线段长短是难点。 四、知识点、概念总结 1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,叫做立体图形。有些几何图形的各部分都在同一平面内,叫做平面图形。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。 2.几何图形的分类:几何图形一般分为立体图形和平面图形。 13.角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。 锐角:大于0,小于90的角叫做锐角。 直角:等于90的角叫做直角。 钝角:大于90而小于180的角叫做钝角。 平角:等于180的角叫做平角。 优角:大于180小于360叫优角。 劣角:大于0小于180叫做劣角,锐角、直角、钝角都是劣角。 周角:等于360的角叫做周角。 负角:按照顺时针方向旋转而成的角叫做负角。 正角:逆时针旋转的角为正角。 0角:等于零度的角。 余角和补角:两角之和为90则两角互为余角,两角之和为180则两角互为补角。等角的余角相等,等角的补角相等。 对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。 还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)! 14.几何图形分类 (1)立体几何图形可以分为以下几类: 第一类:柱体; 包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱; 棱柱体积统一等于底面面积乘以高,即V=SH, 第二类:锥体; 包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及N棱锥; 棱锥体积统一为V=SH/3, 第三类:球体; 此分类只包含球一种几何体, 体积公式V=4R3/3, 其他不常用分类:圆台、棱台、球冠等很少接触到。 大多几何体都由这些几何体组成。 (2)平面几何图形如何分类 a.圆形 b.多边形:三角形(分为一般三角形,直角三角形,等腰三角形,等边三角形)、四边形(分为不规则四边形,体形,平行四边形,平行四边形又分:矩形,菱形,正方形)、五边形、六 注:正方形既是矩形也是菱形 初中数学学习方法 孔子曰:“知之者不如好之者,好之者不如乐之者。”这句话是非常有道理的,它深刻地阐释了学习兴趣对于学习的作用。 之所以把兴趣放在首位,也是因为兴趣是十分重要的。如果你把兴趣调整到学习上,那你就比别人多了许多精力,胜算也就大一些。 经常向一个学习很好的人学习,3年来,最大的发现也莫过于:她对任何一个科目都充满了兴趣。这种兴趣,使它比别人多了一份求知欲。这种求知欲,使他不会放过每一个从她身边划过的知识。这也使她有了别人都难以做到的对于学习的一种艮劲,所以她能过做出许多别人做不出的难题,也使她可以把自己的基本功培养得十分强大。这足以体现兴趣的力量之大了。 培养兴趣也并非一件难事。在这里我只介绍两种方法。 可以利用人的条件反射,如果一个人总是疲劳时候读书学习,他一学习就想睡觉,长此以往,学习和睡觉建立了条件反射,学习的时候就总是无精打采的。这就是有些人上课总爱睡觉的缘故了。你可以在学习前做一些使自己身心愉悦的事情,学习的时候保持这种愉悦的心情。以后,愉快与学习就形成了条件反射,一学习就高兴,一高兴就学习。这样就做到了培养学习的兴趣。不过学习,其他方面也可以这样做。 兴趣需要别人的赞扬和鼓励。当你需要针对某一方面的兴趣时,你先硬着头皮做这种并不愿意做的事情,并投以很大的热情,争取做得好一点。得到别人的夸奖和鼓励,自然就更愿意做了,这样也可以培养兴趣。我初三的下半学期,有一个阶段政治很差,又没有什么兴趣。但我觉得必须提高政治的成绩了。于是我每天回家先写最难办的政治作业,经常主动地找政治老师探讨问题。就这两条措施,十天之内使我的成绩大有长进。 可以说:兴趣是学习中最活跃的因素,是影响学习成绩的主导因素,决定着学习中的一切其他方面。必须重视兴趣。 初中数学合理学习计划 第一、对课本知识扎实的基础。 当然,上课认真听讲,下课认真做作业这都是必不可少的,有了这一点,我们才能学习更深一层的知识。要做到这一点,就要想学习,主动学习,不要被困难吓倒,这正是拿破伦所说的一句话:“一个人想什么并相信什么,他就能得到什么”。 第二、时时刻刻都要学习,学习之后,必须练习和复习。 要学好数学,最重要的是积累,平时做练习,就要做一道弄懂一道认真记住这些题的题型,千万不要贪多求快,这样反而得不到十分好的效果,平时练习所做的题型要会灵活运用,数学题百变不离其题型。一些定理、公式、概念不要一味的死记硬背而是要联系课本的例题来记,这样会轻松许多的。顺便提一下,数学题不要在某一天做很多,而某一天一道也不做,这样下来十分容易遗忘,而是应该每天按量均匀地分配。做题不要太多,这样的效果十分良好。 第三、学会互动,多学,多问 多问老师或同学,平时同学们在学习过程中,遇到了难题,难懂之处,一定要记住请教老师。因为,在你一个人看书的情况下,非常容易造成你对知识的遗漏或理解不完全,从而造成没有弄懂一些重点知识的现象,而立刻影响你以后的学习。 第四、要有竞争意识,永远不复输。 平时在学习过程中大家要认定一个竞争对手在学习上和他决一高下,同学们,也许在你和你的对手之间,成功和失败会反复上演,但是,只要你不复软,每次倒下了又勇敢的站起来,你总将成为一个成功者。 一、整式的加减 1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。 2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。 3、几个整式相加减的一般步骤: (1)列出代数式:用括号把每个整式括起来,再用加减号连接。 (2)按去括号法则去括号。 (3)合并同类项。 4、代数式求值的一般步骤: (1)代数式化简。 (2)代入计算 (3)对于某些特殊的代数式,可采用“整体代入”进行计算。 二、同底数幂的乘法 1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。 2、底数相同的'幂叫做同底数幂。 3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。 4、此法则也可以逆用,即:am+n=am﹒an。 5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。 三、幂的乘方 1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。 2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。 3、此法则也可以逆用,即:amn=(am)n=(an)m。 四、积的乘方 1、积的乘方是指底数是乘积形式的乘方。 2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。 3、此法则也可以逆用,即:anbn=(ab)n。 1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。 2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。 3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。 4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。 5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。 6、各象限点的坐标特点①第一象限的点:横坐标0,纵坐标0;②第二象限的点:横坐标0,纵坐标0;③第三象限的点:横坐标0,纵坐标0;④第四象限的点:横坐标0,纵坐标0。 7、由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。 8、两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。 9、多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。 10、二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。 11、二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。 1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2.三角形的分类 3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 7.高线、中线、角平分线的意义和做法 8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。 9.三角形内角和定理:三角形三个内角的和等于180° 推论1直角三角形的两个锐角互余; 推论2三角形的一个外角等于和它不相邻的两个内角和; 推论3三角形的一个外角大于任何一个和它不相邻的内角; 三角形的内角和是外角和的一半。 10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。 11.三角形外角的性质 (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线; (2)三角形的一个外角等于与它不相邻的两个内角和; (3)三角形的一个外角大于与它不相邻的任一内角; (4)三角形的外角和是360°。 12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 13.多边形的内角:多边形相邻两边组成的角叫做它的内角。 14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。 17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。 18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。 19.公式与性质 多边形内角和公式:n边形的内角和等于(n-2)·180° 20.多边形外角和定理: (1)n边形外角和等于n·180°-(n-2)·180°=360° (2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180° 21.多边形对角线的条数: (1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。 (2)n边形共有n(n-3)/2条对角线。 【初一数学知识点总结202】相关文章: 6.初一数学知识点篇3: 数学初一知识点总结
篇4: 数学初一知识点总结
篇5: 数学初一知识点总结
篇6: 数学初一知识点总结
篇7: 数学初一知识点总结
篇8:初一数学知识点总结
篇9:初一数学知识点总结
篇10:初一数学知识点总结
篇11:初一数学知识点总结
篇12:初一数学知识点总结
篇13:初一数学知识点总结
篇14: 初一数学知识点总结






文档为doc格式