欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>人教版五年级数学上册《简易方程》教案优秀

人教版五年级数学上册《简易方程》教案优秀

2024-12-31 08:23:36 收藏本文 下载本文

“赵赵”通过精心收集,向本站投稿了20篇人教版五年级数学上册《简易方程》教案优秀,下面就是小编给大家带来的人教版五年级数学上册《简易方程》教案优秀,希望大家喜欢阅读!

人教版五年级数学上册《简易方程》教案优秀

篇1:人教版五年级数学上册《简易方程》教案优秀

教学目标

知识与能力

结合操作活动进一步理解方程的意义。

过程与方法

会用含有未知数的等式表示等量关系。

情感、态度与价值观

感受方程与现实生活的密切联系,体验数学活动的探索性。

重点、难点

重点

理解方程的意义,会用含有未知数的等式表示等量关系。

难点

理解方程的意义。

教学准备

教师准备:

多媒体

学生准备:

练习本

教学过程

(一)新课导入:复习导入

1.出示:下面式子哪些是方程,并说明理由?

6+x=14 36-7=29 60+23>70 8+x

x+4<14 ÷18=3 3x-12 5x+2x=63

2、写一个方程,然后在小组里交流,说说什么是方程。进一步巩固理解方程的意义。

设计意图:整理上节课学习的知识,进一步巩固学生对方程意义的理解。

(二)探究新知:

1.联系实际,应用拓展

师:看来同学们理解了方程的意义,掌握了方程的特征,其实方程就隐含在我们的生活中,人们发现在我们的衣食住行中,有很多问题都能用方程的方法来解决。试试看!(出示)

衣:妈妈带50元钱给我买了一件T恤后,还剩下26元。

食:小强去麦当劳,买了一袋薯条和一个l0元的汉堡,一共用了l5元。

住:同学们参加社会实践活动,3个人住一个房间,多少个房间能住102人?

行:公交车上有一些人到谢家湾站时,有13人下车,18人上车,车上还剩36人。

师:你想试哪一个?

生1:我想试“衣”。(生读题)

师:能用方程来表示吗?先写在练习本上,再想一想未知数代表的是什么?

生2:x+26=50

生3:50-x=26

师:这是方程。

生4:X代表T恤的价钱。

生5:我想试“食”。 我是这样写的X+10=15,X代表的是一袋薯条的价钱。

生6:我想试试“行”。

师:你能直接口答吗?

生7:X-13+18=36,X代表的是车上原有的人数。

生7:我想说最后一个“住”。102÷3=X,X代表的是房间数。

师:习惯上都把未知数写在等号的左边。也可以这样表示3X=102

师:刚才我们用方程表达了日常生活中的衣食住行问题,同样,也可以用日常生活来描述方程。

2.(出示)结合生活中的事例解释方程。

①+19=54

②X-14=36

③Z-13十15=37

师:选择自己喜欢的来说。

生1:我想说第2个,我有一些钱,买学习用品花了14元,还剩36元。

师:真是个爱学习的好孩子。

生2:我想说第1个,我有一些零花钱,妈妈又给了我19元,一共有54元。

师:要学会合理使用零花钱。

生3:我想说第3个,公交车上有一些人到百货大楼站时,有10人下车,12人上车,车上还剩30人。

师:先下后上,文明乘车。

……

师:听了同学们的描述,老师认为大家确实理解了方程的意义,会把生活和数学联系起来学习了,很好!

设计意图:将数学知识与生活相联系,是学习数学的目的所在。也使学生学习数学的过程中形成技能。在教学中要保证每个学生参与学习活动,针对学习目标和教学重点,具有层次性和开放性,注重教学的实效性。

(三)巩固新知:

1.出示情境图,学生独立完成。说说列出方程的等量关系。

小丽背80首古诗,小芳背x首古诗,小芳说:你比我少背5首

学生能够列出:小芳背古诗首数-5=小丽背古诗首数

或:小芳背古诗首数-小丽背古诗首数=5

即:x-5=80

或:x-80=5

学生同桌交流,说说自己的想法,然后,全班订正。

2.出示自主练习3。

这是一个结合具体情境理解方程意义的题目。

先让学生独立填写等量关系式并列出方程,交流时,重点引导学生结合示意图说说数量关系。

设计意图:加深理解所学的知识,应用所学的知识灵活解决实际问题。

(四)达标反馈

1.下列各式那些是等式?

①45+32=77 ②5÷X=12 ③3X-4=22 ④2×21=42

⑤a+b=90 ⑥÷6

2.按要求写一写。

篇2:五年级数学上册第五单元简易方程教学教案

简易方程

复习目标:

1.会用字母表示数、数量、定律和计算公式。

2.理解方程的意义,会判断方程。能解方程并验算。

3.能用方程解决实际问题。

复习过程:

一、概念回顾。

1.什么叫做方程?等式与方程有什么区别和联系?什么叫做方程的解和解方程?

2.用字母表示数应该注意什么?

3.用方程解决问题的步骤是什么?

二、基本练习:

1.方程0.6X=3的解是( )

2.a与b的和的一半是( )。

3.梯形面积计算公式用字母表示是( ),乘法结合律用字母表示是( )。

4.判断。

(1)a×b×8可以简写成ab8。

(2)x+5=4×5是方程。

(3)方程一定是等式。

(4)a的立方等于3个a相加。

(5)a÷b中,a、b可以是任何数。

5.解方程。

10.2-5X=2.2 3×1.5+6X =33 5.6X-3.8=1.8

3(X+5)=24 600÷(15-X)=200 X÷6-2.5=1.1

6.解决问题。

(1)一个三角形的高是6米,底是20米,求面积。(用公式计算。)

(2)妈妈有200元钱,是小红的4倍多20元,小红有多少元?

(3)爸爸的年龄比儿子大32岁,是儿子年龄的9倍,爸爸和儿子各多少岁?

(4)学校买10套课桌用500元,已知桌子的单价是凳子的4倍,每张桌子多少元?

三、作业。

篇3:五年级上册数学简易方程知识点

五年级上册数学简易方程知识点

1、用字母表运算定律。

加法交换律: a+b=b+a 加法结合律: a+b+c=a+(b+c)

乘法交换律: a×b=b×a 乘法结合律:a×b×c=a×(b×c)

乘法分配律: (a±b)×c=a×c±b×c

2、用字母表示计算公式。

长方形的周长公式: c=(a+b)×2 长方形的面积公式: s=ab

正方形的周长公式: c=4a 正方形的面积公式: s=

3、读作:x的平方,表示:两个x相乘。

2x表示:两个x相加,或者是2乘x。

4、①含有未知数的等式称为方程。

②使方程左右两边相等的未知数的值叫做方程的解。

③求方程的解的过程叫做解方程。

5、把下面的数量关系补充完整。

路程=(速度)×(时间) 速度=(路程)÷(时间) 时间=(路程)÷(速度)

总价=(单价)×(数量) 单价=(总价)÷(数量) 数量=(总价)÷(单价)

总产量=(单产量)×(数量) 单产量=(总产量)÷(数量)

数量=(总产量)÷(单价 )

工作总量=(工作效率)×(工作时间)

工作效率=(工作总量)÷(工作时间)

工作时间=(工作总量)÷(工作效率)

大数-小数=相差数 大数-相差数=小数 小数+相差数=大数

一倍量×倍数=几倍量 几倍量÷倍数=一倍量

几倍量÷一倍量=倍数

被减数=减数+差 减数=被减数-差 加数=和-另一个加数

被除数=除数×商 除数=被除数÷商 因数=积÷另一个因数

小学数学基数和序数怎么区分

1基数和序数的区别

一、意思不同

基数是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的集合。序数是在基数的基础上再增加一层意思。

二、用处不同

基数可以比较大小,可以进行运算。

例如:

设|A|=a,|B|=β,定义a+β=|{(a,0):a∈A}∪{(b,1):b∈B}|。另,a与β的积规定为|AxB|,A×B为A与B的笛卡儿积。

序数,汉语表示序数的方法较多。通常是在整数前加“第”,如:第一,第二。也有单用基数的。如:五行:一曰水,二曰火,三曰木,四曰金,五曰土。

三、写法

基数:1、2、3

序数:第1、第2、第3

以上就是一些基数和序数的相关信息,希望对大家有所帮助。

2基数和序数简介

基数:一、二、三、四、五、六、七、八、九、十。

序数:第一、第二、第三、第四、第五、第六、第七、第八、第九、第十。

基数在数学上,是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的集合。

序数原来被定义为良序集的序型,而良序集A的序型,作为从A的元素的属性中抽象出来的结果,是所有与A序同构的一切良序集的共同特征,即定义为{B|BA}。

数学两位数乘两位数知识点

1、两位数乘两位数乘法估算,只需注意在估算时,要先根据“四舍五入”法分别求出两个因数的近似数,使其变成整十整百数后,再估算。

2、再书写估算结果时,不要忘了“两个因数末尾有几个0,就在积的末尾写几个0”.

3、0和任何数相乘都得0.

速算绝招:

(A)60×20=『』,把60×20看作60乘2,得120,20是2的10倍,再将得数扩大10倍得1200,心算过程是60×2=120,2的后面有一个0,积120后面加一个0,得1200.

(B)估算时,把一个两位数看成是整十数进行估算,如39×40,把39看成40,40×40=1600,39×40~1600.51×30=『』,估算过程是50×30=1500,51×30~1500.

(C)35×11+『』,把35乘10得350,再用35×1=35,350+35=385,心算过程是:35×11=350+35=385,又如43×11=430+43=473.

(D)23×19=『』,把19看作20来乘,多乘龙1个23,再减去23,心算过程是:23×20-23=460-23=437,如45×21=『』,把21看作20来乘,少乘1个45,再加上45,45×20+45=900+45=945.

(E)34×15=『』,把34×10后再加34×5,因为34×5=34×10 / 2=340 / 2=170,所以34×15的心算过程是:340+340 / 2=340+170=510.

篇4:五年级数学上册《简易方程》同步练习题

人教版五年级数学上册《简易方程》同步练习题

一、用心读题,认真填写。

1、张军要写500个大字,他每天写X个,500X表示( )。

2、用字母表示:加法结合律( );乘法分配律( )。

3、2个b相乘写成( ),2个b相加写成( )。

4、一个数除以a,商4余b,这个数是( )。

5、三个连续自然数的和是36,这三个数中最大的数是( ),最小的数是( )。

6、找规律:1,3,4,6,7,12,m,n,13,48,m表示的数是( ),n表示的'数是( )。

7、如果x=y,根据等式的性质填空:

x+( )=y+7

xc=y( )(c0)

8、当4x=9时,x=( );则0.6x=( )。

二、仔细辨析,正确判断。

1、含有未知数的式子是方程。

2、一件衣服减价c元后是100元,原价是100-c。()

3、当x=2时,x2=2x。()

4、若a-1.7=b+1.4,则a>b。()

5、mc-nc=(m-n)c。()

6、b个7相加,和是7b。()

三、反复比较,合理选择。

1、a与b的和的9倍用式子表示为()。

A.a+9b

B.9a+b

C.9(a+b)

2、方程6-2x=2的解是()。

A.x=0.5

B.x=2

C.x=4

3、方程x+( )=8.7的解是x=5.4,括号里的数应是()。

A.3.3

B.5.4

C.8.7

4、三个边长都是c厘米的正方形拼成一个长方形,这个长方形的周长是()厘米。

A.8c

B. 10c

C.12c

5、李明今年x岁,妈妈今年y岁,后李明比妈妈小( )岁。

A.x-y

B.y-x

C.y-x+10

6、如果2x-8=9,则4x+3=( )。

A.5

B.8.5

C.37

四、解方程。

8.1-x=7.6

0.6m+503=11.3

1.8(x-12)=19.2

3.6x+2x=1.12

5x-47=30

(x+9) 3=7.6

5+x=12

4x-2=30

五、应用题。

1、食堂里的粮食,每天吃a千克,吃了b天,还剩n千克。食堂里一共有多少千克粮食?如果a=27.5,b=2-n=38,食堂一共有多少千克粮食?

2、每箱苹果x元,王阿姨上午卖了8箱,下午卖了11箱苹果。这一天一共卖了多少元钱;上午比下午少卖了多少元钱?

篇5:五年级数学上册《简易方程》教学设计

五年级数学上册《简易方程》教学设计

教学内容

教材50—51页,用等式表示等量关系。

教学提示

本节课的教学让学生结合具体情境进一步理解方程的意义,并会用等式表示等量关系。再通过层层的递进的练习,加深理解所学知识,并应用所学知识解决问题。整节课以学生为主体,以学生为本,培养学生积极思考、主动探究、归纳总结的能力。

教学目标

知识与能力

结合操作活动进一步理解方程的意义。

过程与方法

会用含有未知数的等式表示等量关系。

情感、态度与价值观

感受方程与现实生活的密切联系,体验数学活动的探索性。

重点、难点

重点

理解方程的意义,会用含有未知数的等式表示等量关系。

难点

理解方程的意义。

教学准备

教师准备:

多媒体

学生准备:

练习本

教学过程

(一)新课导入:复习导入

1.出示:下面式子哪些是方程,并说明理由?

6+x=14 36-7=29 60+23>70 8+x

x+4<14 ÷18=3 3x-12 5x+2x=63

2、写一个方程,然后在小组里交流,说说什么是方程。进一步巩固理解方程的意义。

设计意图:整理上节课学习的知识,进一步巩固学生对方程意义的理解。

(二)探究新知:

1.联系实际,应用拓展

师:看来同学们理解了方程的意义,掌握了方程的特征,其实方程就隐含在我们的生活中,人们发现在我们的衣食住行中,有很多问题都能用方程的方法来解决。试试看!(出示)

衣:妈妈带50元钱给我买了一件T恤后,还剩下26元。

食:小强去麦当劳,买了一袋薯条和一个l0元的汉堡,一共用了l5元。

住:同学们参加社会实践活动,3个人住一个房间,多少个房间能住102人?

行:公交车上有一些人到谢家湾站时,有13人下车,18人上车,车上还剩36人。

师:你想试哪一个?

生1:我想试“衣”。(生读题)

师:能用方程来表示吗?先写在练习本上,再想一想未知数代表的是什么?

生2:x+26=50

生3:50-x=26

师:这是方程。

生4:X代表T恤的价钱。

生5:我想试“食”。 我是这样写的X+10=15,X代表的是一袋薯条的.价钱。

生6:我想试试“行”。

师:你能直接口答吗?

生7:X-13+18=36,X代表的是车上原有的人数。

生7:我想说最后一个“住”。102÷3=X,X代表的是房间数。

师:习惯上都把未知数写在等号的左边。也可以这样表示3X=102

师:刚才我们用方程表达了日常生活中的衣食住行问题,同样,也可以用日常生活来描述方程。

2.(出示)结合生活中的事例解释方程。

①+19=54

②X-14=36

③Z-13十15=37

师:选择自己喜欢的来说。

生1:我想说第2个,我有一些钱,买学习用品花了14元,还剩36元。

师:真是个爱学习的好孩子。

生2:我想说第1个,我有一些零花钱,妈妈又给了我19元,一共有54元。

师:要学会合理使用零花钱。

生3:我想说第3个,公交车上有一些人到百货大楼站时,有10人下车,12人上车,车上还剩30人。

师:先下后上,文明乘车。

……

师:听了同学们的描述,老师认为大家确实理解了方程的意义,会把生活和数学联系起来学习了,很好!

设计意图:将数学知识与生活相联系,是学习数学的目的所在。也使学生学习数学的过程中形成技能。在教学中要保证每个学生参与学习活动,针对学习目标和教学重点,具有层次性和开放性,注重教学的实效性。

(三)巩固新知:

1.出示情境图,学生独立完成。说说列出方程的等量关系。

小丽背80首古诗,小芳背x首古诗,小芳说:你比我少背5首

学生能够列出:小芳背古诗首数-5=小丽背古诗首数

或:小芳背古诗首数-小丽背古诗首数=5

即:x-5=80

或:x-80=5

学生同桌交流,说说自己的想法,然后,全班订正。

2.出示自主练习3。

这是一个结合具体情境理解方程意义的题目。

先让学生独立填写等量关系式并列出方程,交流时,重点引导学生结合示意图说说数量关系。

设计意图:加深理解所学的知识,应用所学的知识灵活解决实际问题。

(四)达标反馈

1.下列各式那些是等式?

①45+32=77 ②5÷X=12 ③3X-4=22 ④2×21=42

⑤a+b=90  ⑥÷6

2.按要求写一写。

篇6:五年级上册数学《简易方程》教学设计

教具准备:

天平及相关物品。(也可以将插图制作成课件让学生逐步观察思考)

教学过程:

一、导入新课:同学们用天平做过实验吗?今天我们就要用天平去发现一些重要的规律,有信心吗?

二、新知探究

(一)探寻发现“天平保持平衡的规律1”。

第一步,出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板),

第二步,问:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b。

第三步,问:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?学生回答后,老师一一演示验证。

第四步,想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?

第五步,在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a—a=2b+a—a。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)

第六步,应用,进一步验证。展示数学书P55页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。

(二)探寻发现“天平保持平衡的规律2”。

第一步,出示天平,左盘放一瓶墨水,右盘放两个铅笔盒,天平保持平衡。一瓶墨水等于两个铅笔盒的`质量,如果设一瓶墨水重c克,1个铅笔盒重d克,则可以用一个等式来表示:即c=2d(板),

第二步,问:想一想,如果在左边再放上1瓶墨水,右边再放上2个铅笔盒,天平还保持平衡吗?验证,天平两边加的东西不同,数量也不同,为什么还能保持平衡呢?学生可能会说,因为两边增加的质量相同,肯定;同时引导,天平左边的质量在原来的基础上发生了什么变化?(扩大了2倍),右边呢?(也扩大了两倍)因此,天平两边尽管所增加的东西不同,数量不同,但两边质量所发生的变化是相同的,都扩大了2倍,所以天平仍然保持平衡。用式子表示就是c×2=2d×2。

第三步,刚才的演示反过来,就是天平两边同时缩小相同的倍数,天平保持平衡,用式子表示就是2c÷2=4d÷2。因此,天平除了在两边同时增加或减少同样的物品会保持平衡外,还可怎么变换也可以保持平衡?归纳得出:天平两边物品的质量同时扩大或缩小相同的倍数,天平保持平衡。[

第四步,进一步验证,出示P56的情景,问要求1个排球和几个皮球同样重该怎么办?两边质量同时缩小2倍,即把两边的球都平均分成2份,保留其中的一份,按其操作,天平保持平衡,得出结论:1个排球和3个皮球同样重。

(三)小结天平保持平衡的变换规律,引出等式不变的规律。

通过刚才的实验,我们发现了什么,谁来总结一下。

得出天平保持平衡的变换规律:

(1)天平两边同时增加或减少同样的物品,天平保持平衡;

(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。

老师引导:我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。

交流,发现:等式保持不变的规律:

(1)等式两边都加上或减去相同的数,等式保持不变;

(2)等式两边都乘或除以相同的数(0除外),等式不变。

三、练习。

实物演示并判断:(准备8袋花生,4袋盐)

天平两端分别放有一袋500克的盐和两袋250克的花生。

1、当两边各增加3袋同样的花生(250克/袋)时,天平是否保持平衡?为什么?

2、在“1”的基础上,现在将把天平两端的东西减少,怎样变化?可使天平依然保持平衡?怎么想的?(可抽学生上台动手操作。)

3、假如天平两端只能加与先前完全一样的东西,要保持平衡可以怎么做?怎么想的?

4、一端放有两袋1千克的白糖,另一端放有4袋500克的盐,问一袋白糖与几袋盐同样重,怎么想的?

四:小结。

有什么收获?还有什么问题?

教学内容:数学书P55—56及“做一做”。

教学目标:

1、通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。

2、利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。

3、培养学生观察与概括、比较与分析的能力。

篇7:五年级上册数学《简易方程》教学设计

教材简介:

本单元的主要学习内容是用字母表示数和解简易方程,以及简易方程在解决一些实际问题中的运用。

本单元的内容分为两节,第一节的主要内容是用字母表示数、表示运算定律、计算公式和数量关系。第二节的主要内容是方程的意义,等式的基本性质和解简易方程,以及列方程解决一些比较简单的实际问题。这些内容的编排体系如下表(见底部附件)。

单元教学目标:

1、使学生初步认识用字母表示数的意义和作用,能够用字母表示学过的运算定律和计算公式,能够在具体的情境中用字母表示常见的数量关系。

2、使学生初步了解方程的意义,初步理解等式的基本性质,能用等式的性质解简易方程

3、使学生感受数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。

教学建议:

1。关注由具体到一般的抽象概括过程。

2。用好教材资源,适当扩展联系实际的范围。

3。重视良好学习习惯的培养。

课时安排:

1。用字母表示数3课时

2。解简易方程12课时

第一课时:用字母表示数(一)

教学内容:

教材P44-P46例1-例3做一做,练习十第1-3题

教学目的:

1、使学生理解用字母表示数的意义和作用。

2、能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公式。并能初步应用公式求周长、面积。

3、使学生能正确进行乘号的简写,略写,知道一个数的平方的含义及读写法。

4、在学习中感受到用字母表示数的优越性,激发对数学学习的兴趣。

教学重点:

理解用字母表示数的意义和作用

教学难点:

能正确进行乘号的简写,略写。

教学准备:

投影仪

教学过程:

一、初步感知用字母表示数的意义

教学例1。

1、投影出示例1(1):

引导学生仔细观察两行图中,数的排列规律。

问:每行图中的数是按什么规律排列的?(指名口答)

2、学生自己看书解答例1的(2)、(3)小题

提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都是用一些符号或字母来表示的)

师:在生活中、在数学中,我们经常用字母来表示数。今天这节课我们一起来学习用字母表示数。

问:你还见过那些用符号或字母表示数的例子?

如:扑克牌,行程A、B两地,C大调……。

二、新授:

1、学习用字母表示运算定律和性质的意义和方法。

教学例2:

(1)学生用文字叙述自己印象最深的一个运算定律。

(2)如果用字母a、b或c表示几个数,请你用字母表示这个运算定律。

(3)当用字母表示数的时候,你有什么感觉?

看书45页“用字母表示……。”这一段。

(4)你还能用字母表示其它的运算定律和性质吗?

请学生在草稿本上能写几个写几个,体会用字母表示数的优越性。根据学生写的情况师逐一板书。(学生在表示时,一定要清楚表示的是哪一个运算定律)

加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c

减法的性质:a-b-c=a-(b+c)

除法的性质:a÷b÷c=a÷(b×c)

2、教学字母与字母书写。

引导学生看书P45提问:在这些用字母表示的定律、性质中,哪一个运算符号可以省略不写?是怎样表示的?(请一生板演)

a×b=b×a(a×b)×c=a×(b×c)

可以写成:ab=ba或ab=ba(ab)c=a(bc)或(ab)c=a(bc)

(a+b)×c=a×c+b×c

可以写成:(a+b)c=ac+bc或(a+b)c=ac+bc

其它运算符号能省略吗?数字与数字之间的乘号能省略吗?为什么?(小组同学之间互相说说)师强调:只有字母与字母、数字与字母之间的乘号才可以省略不写。

3、教学用字母表示计算公式的意义和方法。

教学例3(1):

师:字母不但可以表示运算定律还可以表示公式、及数量关系。

用S表示面积,C表示周长,a表示边长你能写出正方形的面积和周长公式吗?

学生先自己试写,然后小组交流,看书讨论。

问:

(1)两个相同字母之间的乘号不但可以省略,还可怎样写?怎样读?表示的含义是什么?

(2)字母和数字之间的乘号省略后,谁写在前面?

a2表示什么?2a表示什么?

师强调:a表示两个a相乘,读作a的平方。

口答结果:3的平方5的平方6的平方

省略数字和字母之间的乘号后,数字一定要写在字母的前面。

4、练习:省略乘号写出下面各式。

x×xm×m0。1×0。1a×63×nχ×8a×c

教学例3(2):

学生自学并完成相关练习。两生板演。师强调书写格式。

三、巩固练习:

1、完成做一做1、2题。

要求:第1题在书上完成。第2题先写出字母公式,再应用公式计算。

2、练习十:第1-3题先独立解答后,再集体评议。

篇8:五年级数学上册《简易方程》学案分析

五年级数学上册《简易方程》学案分析

一? 教学内容

1.用字母表示数

2.简易方程(解方程、列方程解决实际问题)

二? 教学目标

1.初步认识用字母表示数的意义和作用,能够用字母表示学过的运算定律和计算公式,能够在具体的情境中用字母表示常见的数量关系。初步学会根据字母所取的值,求含有字母式子的值。

2.初步了解方程的意义,初步理解等式的基本性质,能用等式的性质解简易方程。

3.感受数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。培养学生根据具体情况,灵活选择算法的意识和能力。

三? 本单元的作用

1.从具体到抽象、个别到一般的一次飞跃。

具体的物(3个苹果)----数(3)----字母(用字母a表示3)

用一个符号表示一个数(常量)--用一个符号表示可变的、抽象的数(变量)

2.有助于对所学的算术知识进行巩固和加深理解。

运算定律、周长与面积计算公式

3.有利于加强中小学数学的衔接,初步渗透代数的思想。

(1)算术思维方法存在局限性:a.逆向思考;b.未知数不参加运算,等于缺少一个条件,思维的'步骤增加。

(2)代数方法是数学的一般方法,在这里学习方程,可先行渗透代数方法。

课标对这方面内容的规定和说明:

(1)在具体情境中会用字母表示数。(2)会用方程表示简单情境中的等量关系。(3)理解等式的性质,会用等式的性质解简单的方程(如3x+2=5,2x-x=3)。

四? 和义务教材对比,有以下不同:

1. 解方程的方法。

九义教材:利用四则运算各部分间的关系

课改教材:利用等式的性质,思路更统一,基本方程的解法可归结为“两边同时加上、减去、乘上、除以同一个数(除法时此数不能为0)”。

从已有的实验来看,方程解法的这种改变学生是可以接受的。在培训过程中,也有很大一部分老师认可这种改变。

2. 方程的类型

由于利用等式的性质解方程,实验教材删去了a-x=b 、a÷x=b的方程基本类型(不是不能解,是解答过程比较麻烦,如果学生列出这样的方程,一是可以让学生自主探索解方程的方法,二是可以引导学生列出其同解方程,如x+b=a、bx=a)。

增加了a(x±b)=c的类型。

3. 解方程与解决实际问题的教学有机整合。

九义教材:先独立学习解方程,再学习列方程解应用题,重难点分散。

实验教材:为了突出数学与实际生活的联系,方程是根据现实素材而列出来的,因此解方程的过程就是解决实际问题的过程,尤其是在“稍复杂的方程”部分,两者完全融合。

具体内容

标题

例题安排

1

用字母表示数五年级数学上册《简易方程》学案分析例1

用字母表示数

例2

用字母表示运算定律

例3

用字母表示计算公式

例4

用字母表示数量关系

2

方程的意义

方程的意义

等式基本性质一

等式基本性质二

解 方 程

方程的解、解方程

例1

解形如x±a=b的方程

例2

解形如ax=b或x÷a=b的方程

例3

列方程解加减计算的问题

例4

列方程解乘除计算的问题

稍复杂的方程

例1

解方程ax±b=c及其应用

(一)用字母表示数

【例1】用字母表示某个具体的数

通过复习以前所学知识,巩固用符号、字母表示某个具体的、特定的数,渗透求未知数的思想,从符号表示逐渐过渡到字母表示,并引出例2。

【例2】用字母表示运算定律

1. 使学生认识用字母表示运算定律的简明性、优越性,一是可以表示一般规律,二是叙述方便。在这儿,字母不止表示一个特定的数,而是表示一般的数。

篇9:五年级上册数学《简易方程》教学设计

五年级上册数学《简易方程》教学设计

教学内容:教科书第144~145页的内容和练习三十四的第1~4题。

教学目的:

使学生加深理解用字母表示数的意义和作用,会用字母表示和常见的数量关系。回根据字母所取的值,求含有字母的式子的值。

使学生加深理解方程的意义,会解简易方程。

教学过程

一、复习用字母表示数。

教师:我们知道,用字母表示数可以简明表达数量关系、运算定律和计算公式,为研究和解决问题带来很多方便。我们通过下面的例子,边回忆、边总结以前学过的内容和方法。

教师:大家先想一想,在一个含有字母的式子里,数字与字母、字母与字母相乘,应该怎样写?例如,a乘以4.5可以怎样写?S乘以h可以怎样写?(a乘以4.5可以写成a×4.5或a·4.5,不可以写成a4.5。S乘以h可以写成S·h或Sh。)

教师指出:除了不能写成a4.5以外,其他都是对的。

用a表示单价,x表示数量,c表示总价,写出下面的数量关系式。

已知单价和数量,求总价的公式;

已知总价和数量,求总价的公式;

已知总价和单价,求数量的公式。

如果每只圆珠笔的价钱是3.75元,要计算买8支圆珠笔要用多少钱,应该用上面的哪个公式?

教师让学生独立解答。巡视时,注意观察学生用的字母和公式的写法是否正确,发现遗忘的要及时辅导,并纠正错误。写完后,集体订正。

教师让学生用字母写出加法和乘法的运算定律,平行四边形和梯形的面积计算公式,长方体、圆柱和圆锥的体积计算公式。学生写完后指名回答。

教师:用a,b,c表示三个自然数,那么同分数相加的计算法则应该怎样写?(a/c+b/c=a+b/c。)

一个商店原有80千克桔子,又运来了12筐桔子,每筐重a千克。

教师指名回答。

80+12a

a=15时,80+12a=80+12×15=260

答:商店一共有260千克桔子。

作教科书第144页“做一做”的题目。

第1题,教师让学生自己做。巡视时,注意观察学生对“a的3倍”与“a的3倍”的结果是怎样选择的。做完后集体订正。

二、简易方程

复习方程的概念。

教师出示复习题:

下列等式,那些是方程,那些不是方程?并说明理由。

19+25=43 5x+4x+8=35 x-2=8

4×3-18÷3=6 3x+5=7 a+4

学生指出:3x+5=7, 5x+4x+8=35, x-2=8是方程。它们是含有未知数的等式;其他的不是方程。

教师:我们知道含有未知数的等式叫做方程。方程的特征是:它含有未知数,同时又是一个等式。

教师:大家会不会解方程?一起解答方程x-2=8。学生解答后,指名回答方程的解(x=10)教师:x=10是方程x-2=8的解。使方程左右两边相等的未知数的值叫做方程的`解。求方程的解的过程叫做解方程。我们把方程的解和解方程这两个概念要分析清楚。

复习解简易方程。

例3 解下列方程,并写出检验过程。

3x+5=7 5x+4x+8=35

学生做题时,教师巡视,注意帮助有困难的学生和及时纠正错误。集体订正时,让学生将“ 5x+4x+8=35”的解答过程写在黑板(或投影片)上,说明解答过程中运用到什么运算定律和运算关系。

教师:在解方程的过程中,我们主要是应用了加、减、乘、除法中各部分间的关系和一些运算定律。

做教科书第145页上面的“做一做”的题目。

第1题,让学生独立完成。集体订正时,指名回答并说明理由。

第2题,让学生独立完成。集体订正时着重说明有3到小题,在解答中出现3x=150,方程的解都是x=50。

例4 一个书的1/2比这个数的25%多10,这个数是多少?

让学生独立解答。订正时。指名用口算检验。

做教科书第145页下面的“做一做”的题目。

让学生独立完成。集体订正时,让学生说明哪一题列方程比较容易,哪一题列算式比较容易。

三、小结

教师引导学生分别按照复习的过程叙述和小结复习的内容。

四、作业

练习三十四的第1~4题。

篇10:小学数学五年级上册《简易方程》测试卷

小学数学五年级上册《简易方程》测试卷

一、填空。

1.解形如aXb=C的方程,先把( )看成一个整体;解形如

a(Xb) =C和(Xa) b=C的方程时,先把( ) 看成一个整体;解形如aXbX =C的方程时,先运用乘法( )律化简为

(ab) X=C,再在方程两边同时除以( )。

2.一个长方形的长为X米,宽比长少4米,它的宽是( )米。

3.分别用算式表示和X相邻的两个自然数是( )和( )。

4.鸡的只数是鸭的5倍,如果鸭有X只,那么鸡就有( )只。

5.苹果每千克X元,葡萄的单价是苹果的2倍,2X表示( )。

6.每个笔记本X元每枝钢笔12元,买3个笔记本和3枝钢笔一共( )元。

7.X的.4倍减去3的差是( )。

8.甲数是X,乙数比甲数的2倍少8,乙数是( )。

二、计算。

8X+9X= 6X-2X= 3X+X=

17X-11X= 2X+10X= 7X-X=

三、我是小法官,对错我来判。

1.某班有男生X人,比女生多y人,这个班共有(X+y)人。 ( )

2.15(a+b)=15a+15b ( )

3.3a+5b=8ab ( )

4.x+x=x2 ( )

5.36-x20 是方程 ( )

四、解下列方程。

5x-40=20 4x+125=78.4

5.4x+x=12.8 10 x-3.6x=16

(x-3)3=7.5 2(x-1.4)=16

五、列方程并求解。

1 . 一个数的4倍加上这个数,和是20.5,求这个数。

2 . X的6.3倍减去x的2.1倍,差是37.8,求x.

六、根据题意写出等量关系,并列出方程。

爷爷今年66岁,孙子今年x岁,爷爷比孙子的年龄的6倍多6岁。

列方程:-----------------------------------------------------------------------------------

七、列方程解应用题。

1.爸爸今年的年龄是儿子年龄的4倍,爸爸比儿子大30岁。爸爸和儿子个多少岁?

2.学校合唱队有68人,比舞蹈队人数的3倍多2人,舞蹈队有多少人?

智力升级。

小朋友,你听说过鸡兔同笼问题吗?鸡和兔的数量相同,两种动物的腿加起来共有54条。鸡和兔各有多少只?

篇11: 五年级上册数学简易方程教学设计

【教学内容】

教材第68页例2、“做一做”和练习十五的第3、4题。

【教学目标】

1.运用等式的性质正确地解方程,并养成检验的好习惯。

2.掌握解方程的`正确格式和写法。

3.进一步提高学生的分析、迁移能力。

【重点难点】

1.正确、熟练地解方程。

2.解方程的方法。

【教学准备】

多媒体课件。

【复习导入】

1.解方程。

x+5.7=10 3.5+x=15

2.问题:等式的性质是什么?什么是方程的解,什么是解方程?

学生回忆后交流汇报。

3.导入新课:我们上节课学习了解方程,这节课继续运用等式的性质解方程,并板书课题。

【新课讲授】

1.教学例2。

(1)出示例2:解方程3x=18。

师:怎样变换,才能使方程保持平衡,又能得出x等于多少?

学生独立思考,同桌相互交流。

引导学生明确:方程两边同时除以3,左右两边完全相等。

学生独立解答写出过程,并检验。

全班交流,你能说一说自己是怎样想的吗?根据什么?

根据学生口述的结果,教师板书。

解:3x=18

3x÷3=18÷3

x=6

检验:方程左边=3x

=3×6

=18=方程右边

所以,x=6是方程的解。

强调:方程两边同时除以一个不为0的数,左右两边相等。解方程时,要注意等号对齐,检验过程要写清楚,养成检验的良好习惯。

(2)即时巩固。

解方程:45x=9 3.6x=7.56

【课堂巩固】

完成课本第68页“做一做”第1题的后3题,第2题的后1题。

学生独立思考,独立完成解答过程,分两组,每三名学生一组进行板演,然后师生共同分析、讲解。

强调注意:2.1÷x=3这道题,先左右同时乘以x,再求解。

答案1.:x=4,x=2.1,x=0.7。

2. 3x=8.4 x=2.6

【课堂小结】

提问:同学们,这一节课你学会了什么?有什么收获呢?

小结:这节课,我们知道了解方程要注意:根据等式的性质解方程时,要注意等号对齐,检验过程要写清楚,养成检验的良好习惯。

【课后作业】

练习十五第3、4题。

篇12: 五年级上册数学简易方程教学设计

【教学内容】

教材第78页例4,“做一做”和练习十七5~10题。

【教学目标】

1.学生通过自主探索、交流互助学会根据两个未知量之间的关系,列方程解答含有两个未知数的实际问题。

2.学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。

3.培养学生的主体意识、创新意识、合作意识,以及分析、观察能力和表达能力。

4.让学生体验到生活中处处是数学,体验数学的应用价值和数学学习的乐趣。

【重点难点】

正确设未知数,找出等量关系列方程解决问题。

【教学准备】

教具:地球仪多媒体课件

【复习导入】

1.填空。

(1)学校科技组的男同学人数是女同学的3倍。设女同学有x人,则男同学有人;设男同学有x人,则女同学有()人。

(2)学校书法组有女同学x人,男同学人数是女同学的2.5倍。男同学有()人,一共有()人,男同学比女同学多()人。

2.看图列方程,并求出方程的解。

3.导入新课:这节课我们继续学习列稍复杂的方程解决实际问题。(出示课题)

【新课讲授】

1.情景导入。

课件出示:转动着的地球。

师:同学们,这就是我们人类赖以生存的地球,地球表面大部分的地方都被海洋所覆盖,海洋的面积要远远超出陆地的'面积。因此,也有人把地球称为“水球”,所以,地球看上去是漂亮的深蓝色。那么你们想知道地球上的陆地面积、海洋面积究竟有多大吗?好,下面老师给你们提供一些信息。

2.出示例4。

地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。海洋面积和陆地面积分别是多少亿平方千米?

3.分析,理解题意,找等量关系,列方程。

师:请同学们先思考下面的问题:

(1)题中有几个未知量?

(2)设谁为x比较合适?为什么?

(3)问题中包含有怎样的等量关系?

(4)怎样列方程?

汇报交流,总结:

(1)题中有两个未知量,陆地面积和海洋面积。海洋面积约为陆地面积的2.4倍。

(2)根据“海洋面积约为陆地面积的2.4倍”设未知数,陆地面积是x,海洋面积是2.4x。

出示:(线段图)

(3)根据“地球的表面积为5.1亿平方千米”,得到等量关系是海洋面积+陆地面积=地球表面积。

(4)列方程是:x+2.4x=5.1

讲解:用方程解,一般设“一倍量”为x,那么“几倍量”就可以用几x表示, 根据题中另一个条件找数量间的相等关系,然后列方程。

课件出示:(配合教师小结出示)

解:设陆地面积为x亿平方千米。

那么海洋面积可以表示为2.4x亿平方千米。

海洋面积+陆地面积=地球表面积

x+2.4x=5.1

4.解方程。

师:会解这个方程吗?试一试吧。

汇报,交流。

(1+2.4)x=5.1(追问:根据是什么?)

3.4x=5.1

3.4x÷3.4=5.1÷3.4

x=1.5

讨论:1.5表示什么意思?海洋面积怎样求?

学生自由发言。

小结:求海洋面积有两种方法。

方法一:5.1-1.5=3.6(亿平方千米)

方法二:2.4x=2.4×1.5=3.6(亿平方千米)

5.检验。

师:我们做得对吗?如何检验呢?

学生讨论,汇报。

小结:检验有两种方法。

第一种是用代入方程检验的方法:

1.5+2.4×1.5=5.1

第二种:用检查答案是否符合已知条件的方法来检验。

1.5+3.6=5.1

6.即时巩固。

解方程:x+1.5x=5x-0.5x=30

【课堂作业】

完成课本第81页练习十七的第5~8题。

【课堂小结】

提问:这节课你学习了什么?题目中有两个未知数,怎样列方程解答?

小结:第一,两个未知数怎么办?可以先选择其中一个设为x,列方程解,再求另一个。

第二,两个已知数条件怎么用?可以把其中一个用来写含有字母的式子,表示另一个未知数,另一个用来列方程。

第三,怎样验算?可以通过列式计算,检验两个得数的和及倍数关系是否符合已知条件。

【课后作业】

完成教材第81页练习十七第9~10题。

篇13: 五年级上册数学简易方程教学设计

【教学内容】

教材第54页例3和练习十二的第5-13题。

【教学目标】

1.使学生在旧知识的基础上,进一步认识用字母表示运算定律和计算公式;理解用字母表示数的意义;知道一个数的平方的含义,学会在含有字母的式子里简写和略写乘号。

2.使学生能够语言表达运算定律和字母公式,能够将数字代入字母公式进行计算,培养学生的抽象概括能力。

3.渗透字母表示运算定律和公式的简单美。

【重点难点】

1.用字母表示运算定律和公式;根据字母公式求值。

2.理解一个数的平方的含义,乘号的简写和略写。

【教学准备】

多媒体课件、小黑板。

教学过程:

【情景导入】

1.在()里填上适当的数,并说明根据什么。(投影出示)

18+34=34+()(加法交换律)

(357+55)+45=357+(+)(加法结合律)

35×()=59×()(乘法交换律)

(1.2×2.5)×4=1.2×(×)(乘法结合律)

(4+8)×3.5=()×3.5+()×()(乘法分配律)

2.你能用字母表示这些运算定律吗?还记得这些运算定律的文字叙述吗?

3.讨论交流:我们用文字描述了这些运算定律,但是文字很多,有什么办法更简便呢?

学生汇报交流:用字母来表示运算定律比用文字叙述运算定律更简便。

4.揭示课题:这节课,我们就来继续研究用字母表示数。(板书课题)

【新课讲授】

1.教学例3中的第(1)题。

(1)结合课前引入,多媒体出示例3(1)的情景图,引导学生用字母表示这些运算定律。

(2)先在组内说一说,然后按照教材中的表格填写在书上。

填写表格,全班交流。

(3)体会用字母表示数的简便性。

提问:通过刚才的回忆、整理、交流、展示,你从中发现了什么?

引导总结:用字母表示运算定律比用文字叙述运算定律更简明易记、便于应用。

(4)介绍乘号的不同表示方法。

师:同学们的眼睛可真亮!发现了用字母表示运算定律比用文字叙述运算定律更简明易记、便于应用。其实,在这些含有字母的式子里,还可以进一步简化。请大家认真观察屏幕,看你能发现什么?(多媒体出示)

学生小组讨论,交流,然后全班汇报。

引导小结:在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。比如a×b=b×a可记作:成a·b=b·a或ab=ba。

师:下面请大家再用简便的形式把运算定律写一遍。

学生独立完成用字母表示运算定律。

2.教学例3中的第(2)题。

(1)用字母表示计算公式。

师:同学们,如果用S表示面积,用C表示周长,正方形的面积和周长怎样用字母表示呢?

(多媒体出示例3(2)图。)

学生活动:尝试用字母表示正方形的面积和周长,小组内交流。全班汇报, 教师学生明确:

①关于“平方”的表示方法。

师:在正方形的.面积公式S=a·a中出现a·a,也可以写成a2,读作“a的平方”,表示两个a相乘,所以正方形的面积公式一般写成S=a2。

讨论:a2也可以写成a×2,对吗?

小组讨论,说明理由,教师引导小结:

a=a·a,表示两个a相乘。

a×2=a+a,表示两个a相加。

即时巩固:完成教材第56页练习十二第6题。

(反馈时注意:a不能与a×2连线,6不能与6×2连线。)

②在周长公式C=a·4中,在省略乘号时,一般把数字写在字母的前面,即C=4a。

即时巩固:完成教材第56页练习十二第5题。

(2)用字母公式计算面积和周长。

师:同学们,我们已经知道用字母可以表示公式,下面请你用字母公式求出正方形的面积和周长。

学生试口述计算求值过程。

师:我们在计算正方形的面积和周长时,实际就是把已知数代入了相关的公式,算出的结果就是面积和周长。

板演示范正方形面积的代入计算过程:

S=a=6×6=36(cm)

强调:在利用公式求面积或周长时,首先要写出公式,然后把字母表示的数代入公式中进行计算,计算时不写出单位名称,但要写答句。

学生试按要求独立完成正方形周长公式的代入计算。

【巩固练习】

1.完成课本第56页练习十二第7、10题。

【课堂小结】

【课后作业】

1.教材第56~57页练习十二第8~9,11~13题。

篇14: 五年级上册数学简易方程教学设计

【教学内容】

教材第74页例2和练习十六的第1、5~11题。

【教学目标】

1.通过教学使学生学会解形如ax±b=c的方程,并能正确列出这种形式的方程解应用题。

2.培养学生的分析能力。

3.引导学生感受列方程解应用题的优越性,在多种方法中选择简单的方法解决问题。

【重点难点】

掌握解ax±b=c形式的方程的方法,并能正确找出题中数量间的相等关系。

【教学准备】

多媒体课件。

教学过程

【复习导入】

1.准备练习。(1)解方程。

4x=100 x-2.5=3 2x=15

根据已知条件列出方程。

①我们班有女生x人,男生60人,比女生的2倍少6人。

②我们班最低的同学身高x厘米,最高的同学身高170厘米,比最低同学身高的2倍少100厘米。

③亚洲人口约有39亿,比欧洲人口的5倍多4亿。欧洲人口约有x亿。

2.导入新课:这节课我们继续学习实际问题与方程。并板书:

【新课讲授】

1.出示例2。

师:观察主题图,你能获取什么信息?

学生讨论、汇报。

2.探究解决问题的方法。

提问:白色皮块数与黑色皮块数之间有什么关系呢?观察下面的线段图你能 说出它们的数量关系式吗?

教师演示画线段图:

小组讨论,汇报:

黑色皮的块数×2-4=白色皮的块数

黑色皮的块数×2=白色皮的块数+4

黑色皮的块数×2-白色皮的块数=4

师:同学们都很细心,观察得非常仔细。用我们学过的列方程解应用题的知识怎样求黑色皮有多少块呢?

小组讨论交流、汇报:

方法一:根据等量关系式:黑色皮的块数×2-4=白色皮的块数,把黑色皮块数设为x,列方程,再求出x。

2x-4=20

方法二:根据等量关系式:黑色皮的块数×2=白色皮的块数+4,把黑皮块数设为x,列方程,再求出x。

2x=20+4

方法三:根据等量关系式:黑色皮的块数×2-白色皮的块数=4,把黑色皮的`块数设为x,列方程,再求出x。

2x-20=4

师:同学们很善于动脑筋。根据不同的数量关系列出了比较复杂的方程,但是怎样解这些方程呢?

3.探究列方程解决实际问题的步骤。

师:方程2x-20=4,2x=20+4和2x-4=20都比我们前面学到的更复杂了一些,怎样解这样的方程呢?

要求黑色皮的块数,根据题意,应该先求黑色皮的块数的2倍,即先求2x。因此,先把2x看作一个整体,再求x等于多少。

板书:2x-20=4

2x-20+20=4+20

2x=24

请学生独立完成下面的过程,求出x,写清过程,并检验。然后再把另外两个方程也解出来。

学生解答后,指名板演以上三种不同方法所列出的方程的解法。

方法一: 方法二: 方法三:

2x-4=20 2x=20+4 2x-20=4

2x-4+4=20+4 2x=24 2x-20+20=4+20

2x=24 2x÷2=24÷2 2x=24

2x÷2=24÷2 x=12 2x÷2=24÷2

x=12 x=12

提问:比较这三个方程的解法你发现什么相同之处?(发现它们都是转化为2x=24再解)

老师小结:像上面这样形式的方程,我们可以把2x看作一个整体,先求出2x等于多少,再求出x等于多少。

解方程步骤:(1)找出未知数,用字母x表示;

(2)分析实际问题中的数量关系,找出等量关系,列方程;

(3)解方程并检验作答。

4.即时巩固。

解方程:

3x+6=36 2x-7.5=8.5 3+2x=12

【课堂作业】

1.学生独立完成课本第75页练习十六第1题。

完成后集体订正。对于4x-3×9=29这道题给予适当指导,可以先算3×9。

2.完成教材第75页练习十六第5、6题。

师:结合上面的练习和刚才的例1,请同学们思考:列方程解决问题的步骤是什么?哪一步最关键?(找等量关系)

引导学生归纳:(用多媒体出示)

(1)弄清题意,找出未知数,用x表示;

(2)分析,找出数量间相等的关系,列方程;

(3)解方程;

(4)检验,写出答案。

【课堂小结】

这节课你又学习了什么新知识?有什么收获?

【课后作业】

教材第76页练习十六第7~11题。

篇15: 五年级上册数学简易方程教学设计

【教学内容】

教材第83页的内容和练习十八的第1~9题。

【教学目标】

1.通过学习使学生更加系统地掌握本单元所学的知识,进一步理解和掌握用字母表示数的含义、方法、等式的基本性质,提高解简易方程的能力。

2.通过对用列方程方法解决问题的整理和复习,进一步掌握列方程解决问题的思考方法和特点,体会列方程解决问题的优越性。

3.提高学生灵活选用合适的方法解答应用题的能力。

4.使学生养成自觉整理知识的良好习惯。

【重点难点】

1.使学生更加系统完整地掌握本单元知识,进一步提高总结、归纳知识的能力。

2.通过整理和复习,进一步掌握用方程解决问题的思考方法和特点,提高灵活应用知识的能力。

【知识梳理】

1.揭示课题:这节课我们一起来对本单元所学习的知识进行整理和复习。(出示课题)

2.整理知识点。

师:请同学们认真回顾,本单元我们学习了哪些知识?这些知识之间有什么联系?

小组合作归纳这部分内容后,汇报。

根据学生的汇报,教师帮助学生形成知识网络,板书:

【复习提升】

1.复习用字母表示数。

提问:

(1)回忆一下,用字母可以表示什么?(用字母可以表示数、公式、运算定律、数量关系等等。)

(2)用字母表示数时有哪些简写的规定?

(3)用含有字母的计算公式求值时,应注意什么?

跟踪训练:

(1)用字母表示下面的运算定律和计算公式。

加法结合律:

加法交换律:

乘法结合律:

乘法交换律:

长方形的周长计算公式:

长方形的面积计算公式:

正方形的周长计算公式:

正方形的面积计算公式:

(2)城区修一条长a千米的公路,已经修了15天,每天修b千米,剩下的要c天完成。

①15b表示

②a-15b表示()

③15+c表示()

④(a-15b)÷c表示()

(3)算一算。

当a=3,b=5.8,x=1.5时,求下列各式的值。

①40x+a②ab÷0.48

答案:(2)①15天修的长度②剩下没修的长度③修完公路所用的总天数④剩下的每天要修的长度

(3)①40x+a=40×1.5+3=63②ab÷0.48=3×5.8÷0.48=36.25

2.复习解方程。

(1)方程的意义。

师:这个单元我们还学习了方程的意义,什么叫方程?

判断:下面的式子是不是方程?

①x÷b=3②2x-7>9③0.2x+4=6④3b+2b=2.5⑤12x-9x=8.7⑥2.7+4.8=x÷2

小结:含有未知数的等式叫方程。

师:方程和等式有什么关系?你能用图示表示出来吗?

板书:

小结:方程一定是等式,等式不一定是方程。

(2)等式的性质。

师:等式有什么性质?

学生回答。

(3)解方程。

0.2x+4=6 12x-9x=8.7 3(x+2.1)=10.5

①想一想解方程的原理是什么?等式的性质是什么?

②举例:怎样验证0.2x+4=6,x=10是方程的解?

③什么叫解方程?什么是方程的解?

跟踪训练:

(1)完成课本第83页的第1题。

(2)完成课本练习十八的第1题。

答案:(1)x=2.4 x=9.7 x=3.2

x=5 x=1.4 x=2.9

(2)X X√√

3.复习实际问题与方程。

师:请同学们回顾一下,列方程解决问题这部分,我们都学了哪些知识?

学生汇报:

(1)列方程解决问题的一般步骤是:

①理解题意,找出未知数,用x表示;

②分析,找出题中数量间相等的关系,列方程;

③解方程;

④检验并写出答案。

(2)列方程解应用题的关键是找出题中相等的数量关系。

(3)算术方法和方程方法有何区别?

跟踪训练:

1.找相等关系的'练习。

A:长方形的周长为30m,长10m,宽多少米?

小结:策略一:我们可以利用计算公式找相等关系。

B:明明运动后的心跳比运动前快了55下。

师:能找到相等关系吗?还能找到不一样的相等关系吗?

小结:策略二:读懂关键句子,分析相等关系。

2.分析相等关系的练习。

妈妈去超市买了2箱方便面付给营业员100元,找回28元,设每箱方便面x元,下面()是错误的。

A.100-2x=28 B.2x+28=100

C.2x-100=28 D.2x=100-28

3.完成课本第83页的第2题。

4.完成课本练习十八的第3、6题。

答案:1.A.(长+宽)×2=周长

B.运动后的心跳-运动前的心跳=55

运动前的心跳+55=运动后的心跳

运动后的心跳-55=运动前的心跳

2.C

3.(1)解:设两个月前他的体重是x千克。

x-3=93 x=96

答:两个月前他的体重是96千克。

(2)解:设这条街一共有x盏路灯。

5x=140 x=28

答:这条街一共有28盏路灯。

(3)解:设梅花鹿的高度为x米,则长颈鹿的高度为(x+3.65)米。

3.5x=x+3.65 x=1.46

1.46+3.65=5.11(m)

4.第3题:75次

第6题:长:0.6m,宽:0.3m,面积:0.18m

【课堂小结】

提问:学习了这节课,你们有什么收获?还有什么疑问?

小结:学习了这节课,我更加系统完整地掌握了本章知识,进一步掌握了用方程解决问题的思考方法和特点。

【课后作业】

1.课本练习十八的第1~2,4~5,7~9题。

篇16: 五年级上册数学简易方程教学设计

【教学内容】

教材第62、63页的内容,练习十四的第1~3题。

【教学目标】

1.通过教学,使学生理解与掌握方程的意义和等式的基本性质。

2.培养学生观察、归纳和概括的能力。

3.培养学生仔细观察的良好习惯。

【重点难点】

理解方程的意义。

【教学准备】

多媒体课件,自制天平教具。

【情景导入】

在下面算式的○里填上“>”、“<”或“=”。

3×6○19 7○1.8+5.2

2.5÷5○2×0.25 24+11○11+24

3.9-3○4÷5 15×8+2○120+2

小结:像7=1.8+5.2,2.5÷5=2×0.25,24+11=11+24,15×8+2=120+2这样的式子叫做等式。这节课我们就来研究有关等式的问题。

【新课讲授】

1.激趣导入。

师:同学们在游乐场玩过跷跷板的游戏吗?(多媒体出示小朋友玩跷跷板的画面)如果两端的小朋友重量一样,会出现什么情况呢?这就是平衡。

2.方程的意义。

(1)认识天平。

出示简易天平、砝码。

提问:同学们知道这是什么?它是用来干什么的?怎样用天平称物品的重量呢?

师:这是一台天平,用来称量物体的重量。在天平的左盘内放置所称的物品,右盘内放置砝码,当天平的指针在标尺中间时,表示天平平衡,也就是天平两端的重量相等,砝码上所标的重量就是所称物体的重量。

(2)实验演示,引出方程。

师:下面我来演示一下如何用天平称物品的重量。

演示实验一:称出一只空杯子重100克。

提问:天平平衡了吗?这说明一只空杯子重多少克?

板书:一只空杯子=100克

演示实验二:往空杯子里倒入约150毫升水(可在水中滴几滴红墨水显示)。

提问:现在天平怎样?如果水重x克,杯子和水共重多少克?你能用一个式子来表示吗?

板书:100+x>100

演示实验三:增加100克砝码。

提问:增加100克砝码,发现了什么?(杯子和水比200克重)

如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?

板书:100+x>200

演示实验四:再增加100克砝码,天平往砝码这边倾斜。

提问:现在哪边重些?怎样用式子表示?

板书:100+x<300

演示实验五:把100克砝码换成50克,天平出现平衡。

提问:现在天平怎样?你能用一个式子来表示天平是平衡的吗?

板书:100+x=250

(3)理解“等式”、“不等式”和“方程”的意义。

出示多幅天平图。

提问:这些图你能用式子表示吗?

板书:40+x=100,2x+50<180,80+70=100+50,3x=180,65+30>80,100+2x=50×3。

教师指出:像2x+50<180,65+30>80这样用大于、小于号连成的式子,它们左右两边不相等,就叫做不等式。像40+x=100,80+70=100+50这样用等号连接成的式子,它们左右两边相等,就叫做等式。

师:观察以上有几个是等式,你能不能分类,也说一说你分类的标准?(同桌讨论)

可以分成两类:

第一类:80+70=100+50。

第二类:40+x=1003x=180100+2x=50×3

讲解:像第二类这样,含有未知数的'等式叫做方程。

提问:说一说什么叫方程?必须具备哪几个条件?

(一必须是等式,二必须含有未知数)

师:你能举例说明什么是方程吗?(根据学生发言,教师板书。)

老师再板书几个一般的等式,如:

20+80=100 3×78=234 13-8=5

引导学生观察、对比、思考:方程有什么特点?方程与等式之间有什么联系呢?

小组讨论,先在组内说一说,再全班说。

根据学生发言,教师加以引导,使学生明确:等式包括方程,等式的范围比方程的范围大;方程都是等式,但等式不一定是方程。你能用图示表示出来吗?

板书:

【课堂作业】

1.完成课本第63页的“做一做”。

2.我是小法官,对错我来判。(对的在括号内打“√”,错的打“X”)

(1)含有未知数的式子都是方程。()

(2)4m-9=0不是方程。()

(3)方程是等式。()

3.用方程表示下面的数量关系。

【课堂小结】

提问:这节课你学习了什么?有什么收获?

小结:这节课,我们学习了等式、不等式和方程。方程和等式既有区别又有联系,方程必须是含有未知数的等式,而等式只要等号两边数值相等即可,所以等式包括方程,但等式不一定是方程。

【课后作业】

完成教材练习十四的第1~3题。

篇17: 五年级上册数学简易方程教学设计

【教学内容】

教材第67页例1、“做一做”和练习十五第1、2题。

【教学目标】

1.根据等式的性质,使学生初步掌握解方程及方程检验的方法,并理解方程和方程的解的概念。

2.培养学生的分析能力及应用所学知识解决实际问题的能力。

3.帮助学生养成自觉检验的良好习惯。

【重点难点】

理解并掌握解方程的方法。

【教学准备】

实物投影及多媒体课件。

【复习导入】

1.提问:什么是方程?等式有什么性质?

2.你会根据下面的图形列出方程吗?

3.填一填。

4.导入新课:前面两节课我们借助天平平衡,学习了方程的意义和等式的性质,今天这节课我们继续研究与方程有关的新知识。

【新课讲授】

1.方程的解与解方程的概念。

(1)理解“方程的解”和“解方程”的意义。

教师演示:先在左盘放上一个重100g的杯子,再往杯子里加入xg的水,天平失去平衡。

提问:怎样才能使天平保持平衡呢?

请学生到台前操作:天平右边的砝码加到250g时,天平平衡。

提问:你能根据天平两边物体质量的相等关系列出方程吗?

根据学生的回答,板书:100+x=250

启发:怎样才能求出方程中未知数x的值呢?你有什么办法?把你的办法和小组的同学交流。

学生活动后,组织反馈。

方法一:根据加减法之间的关系。

因为250-100=150,所以x=150。

方法二:根据数的组成。

因为100+150=250,所以x=150。

方法三:根据等式的性质。

因为100+x-100=250-100,所以x=150。

讲解:当x=150时,100+x=250这个方程的左右两边相等,像这样使方程左右两边相等的未知数的值,叫做方程的解。求方程解的过程叫解方程。这节课我们就来学习解方程。(出示课题)

(2)比较“方程的解”和“解方程”。

提问:方程的解与解方程到底有什么不同呢?

根据学生的交流情况,引导小结:方程的解是一个数,解方程是一个过程。 那么你怎样检验x的值是不是方程的解呢?

学生汇报。

(3)即时巩固。

完成教材第67页“做一做”第2小题。

2.教学例1。

(1)出示例1题图。

师:今天我们学习怎样利用天平平衡的原理来解方程。请同学们观察思考:怎样才能使天平左右两边只剩“x”,而保持天平平衡呢?

引导学生思考:根据在天平两边同时拿走相同的物品,天平仍然平衡的道理,即方程左右两边同时减去一个数,仍然相等。

追问:为什么要从方程两边同时减去3,而不是其他数?

结合学生的回答,教师板书:

x+3=9

x+3-3=9-3

x=6

提问:解方程的过程就是这样的吗?还应该注意些什么呢?

讲解:求方程中未知数x的值时,要先写“解”,表示下面的过程是求未知数x的.值的过程,再在方程的两边都减去3,求出方程中未知数x的值。写出这一过程时,要注意把等号对齐。(示范板书解方程的过程)

解:x+3=9

x+3-3=9-3

x=6

引导:x=6是不是正确的答案呢?我们可以通过检验来判断:把x=6代入原方程,看看左右两边是不是相等。

提问:如果等式的左右两边相等,说明什么?(说明答案是正确的)如果不相等呢?(说明答案是错误的)请同学们用这样的方法试着检验一下。(随学生的回答扼要板书检验过程)

师:像刚才这样,求方程中未知数的值的过程,叫做解方程。请同学们回忆刚才解方程的过程,你认为解方程时要注意什么?

(2)即时巩固。

解下列方程,并检验。

x+4.5=9100+x=100

师强调:解方程时注意等号要对齐,检验时过程要写清楚,养成检验的良好习惯。

教师提问:通过例1我们知道,方程两边同时减去一个相等的数,方程左右两边相等。请同学们想一想,如果方程两边同时加上一个数(0除外),左右两边还相等吗?

【课堂作业】

1.完成课本第67页“做一做”第1题。

2.解下列方程,并检验。

【课堂小结】

提问:这节课你学习了什么?还有什么收获

小结:通过刚才解方程的过程,我们知道了方程两边同时加上或减去一个相同的数,左右两边仍然相等。需要注意的是,在书写过程中写的都是等式,不是递等式。

【课后作业】

完成课本练习十五的第1、2题。

篇18: 五年级上册数学简易方程教学设计

【教学内容】

教材第73页例1、“做一做”和练习十六的第2~4题。

【教学目标】

1.使学生掌握列方程解决实际问题的基本方法和步骤。

2.找出题中数量间相等的关系,根据等量关系正确地列出方程并解答。

3.培养学生从问题出发去寻找所需条件的分析能力。

【重点难点】

1.根据等量关系正确地列出方程并解答。

2.找出题中数量间相等的关系,根据等量关系正确地列出方程。

【教学准备】

多媒体课件。

【复习导入】

1.用方程表示下列各题的数量关系,并填在横线上:

(1)x的2倍与3.5的和是7.3:

(2)从30里减去 x的1.5倍,差是18:

(3)一个数的6倍减去35,差是13:

学生先讨论后尝试找出题中的数量关系,列出等量关系式,学生独立完成后相互交流。

2.解方程。

x+5.7=10 3x-6=18 2(x+2.5)=5

三名学生板演,并交流解答过程。

3.导入新课:出示学校运动会跳远比赛的情景图片,大家能提出什么有价值的问题呢?

学生自由讨论后汇报交流。

那么这节课我们一起来学习利用方程解决实际问题。

出示课题,引入新课并板书。

【新课讲授】

1.教学例1。

(1)出示例1情景图。

这是一次学校运动会的情景,小明进行跳远比赛的场景,大家看:小明的跳远成绩是4.21m,超过学校的原纪录0.06m,学校原跳远纪录是多少米?

(2)找等量关系。

课件演示小明的跳远成绩、学校原跳远纪录及其关系。

提问:你能根据演示说明,说出小明的跳远成绩、学校原跳远纪录和超出成绩的关系吗?

根据学生回答,板书:

A.小明跳远的`成绩-超过的成绩=学校原跳远纪录

B.学校原跳远纪录+超过的成绩=小明跳远的成绩

C.小明跳远的成绩-学校原跳远纪录=超过的成绩

(3)探究方法。

提问:你能试着用自己想到的方法解答吗?

学生汇报算术方法:4.21-0.06=4.15(m)

师:谁还能用其他的方法来解答这道题?如果设学校原跳远纪录为x米,那么根据上面分析得出的等量关系,怎样列方程?

学生尝试解答,并请学生汇报自己的解答过程。

教师板书:

解:设学校原跳远纪录为x米,

由学校原跳远纪录+超过的成绩=小明跳远的成绩

x+0.06=4.21

x+0.06-0.06=4.21-0.06

x=4.15

学生解答后,验证解答方法是否正确。

教师小结:根据不同的等量关系,可以列出不同的方程,一般来说,同一等量关系,用加法比用减法表示更容易思考。

(4)师生共同小结:用方程解决实际问题的步骤。

师:用方程解决实际问题需要注意什么?

小组交流并汇报,教师引导学生总结出用方程解决实际问题的方法、策略、步骤。

①审清题意,找出未知数,用x表示;

②找出等量关系,并列出方程;

③解方程;

④验算。

2.典例讲析。

例:修一条长240km的高速铁路,还剩42km没有修,已经修了多少千米?

分析:此题要求修一条长240km的高速铁路,现在还剩42km没有修,求已经修了多少千米,它们之间的关系为已修+剩下的=总长。我们可以设已经修的为x千米,再依关系式列方程。

解:设已经修了x千米。

x+42=240

x=198

检验:把x=198代入原方程,方程左边=198+42=240=方程右边

所以x=198是原方程的解。

答:已经修了198km。

【课堂作业】

完成课本第73页“做一做”。

【课堂小结】

提问:同学们,通过这节课的学习,你知道列方程解决实际问题的解题步骤了吗?还有什么疑惑?

【课后作业】

完成教材第75页练习十六第2~4题。

篇19: 五年级上册数学简易方程教学设计

【教学内容】

教材第68页例3、“做一做”和练习十五的第5、6、7题。

【教学目标】

1.使学生掌握列方程解应用题的基本方法和步骤。

2.培养学生从问题出发寻找所需条件的分析能力。

3.进一步提高学生计算、分析能力。

【重点难点】

1.正确的解方程的方法。

2.正确的列出方程。

【教学准备】

多媒体课件。

【复习导入】

1.解方程。

2x=1.6 x÷2.7

2.导入新课:我们上节课学习了形如ax=b x÷a=b的方程的解法,这节课我们继续运用等式的性质解方程,并板书课题。

【新课讲授】

1.教学例3。

(1)出示例3:解方程20-x=9。

(2)学生思考并交流:这道题中是减去x,怎么办呢?

(3)教师引导:把这个方程变成x+a的形式,方程左右两边同时加上x,左右两边相等。

(4)学生独立写出解答过程,并检验。

小组代表汇报交流,你是怎么想的?根据什么?(根据等式的性质,等式左右两边同时加上一个相同的数,等式仍然相等。)

(5)教师结合学生的.汇报,讲解并板书。

解:20-x=9

20-x+x=9+x

20=9+x

9+x=20

9+x-9=20-9

x=11

检验:方程左边=20-x

=20-11

=9=方程右边

所以,x=11是方程的解。

(6)自由讨论:解方程需要注意什么?

学生汇报、交流。

教师引导小结:根据等式的性质解方程时,要注意等号对齐,检验过程要写清楚,养成检验的良好习惯。

【课堂巩固】

完成课本第68页“做一做”第1题前面3小题、第2题中第1小题,将同学进行分组,每三名同学一组进行板演。首先各小组独立思考,完成解答过程。最后师生共同分析,讲解。

答案1.x=1.4,x=5.8,x=13

2. 4-x=1.2 x=2.8元

【课堂小结】

提问:通过本节课的学习,同学们学会了什么?有什么收获呢?

小结:这节课我们学习了a-x=b的方程的解法,先把等式左右两边同时加上x,变为b+x=a,再按x+a=b的方程的解法求解。在解方程时要注意等号对齐,检验过程要写清楚,养成检验的良好习惯。

【课后作业】

教材第70~71页练习十五第5~7题。

篇20:五年级数学上册《简易方程》教师教学反思

长期以来,在小学教学解简易方程,是依据加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。这种方法到了中学又要另起炉灶,重新开始。根据新课标的要求,人教版教材从小学起就引入等式的基本性质,并以此为基础导出解方程的方法,使学生摆脱算术思维方法中的局限性,有利于加强中小学的知识衔接。

猜想是学生学习数学的一种重要方式,通过让学生综合已有的知识和经验的基础上经历等式的变化过程,不仅让学生体会到数学来源于生活,还为猜想等式的性质奠定了良好的基础。学生一旦作出了猜想,就会迫不及待的想去验证自己的'猜想是否正确,从而主动地去探索新知。

任何猜想都必须经过验证,才能确定是否正确,而验证的过程也正是学生主动学习探索数学知识的过程。学生通过自己动手用天平称一称,验证自己的猜想,以一种自主探究的方式进一步认识了等式的性质,为后面学习解方程奠定了良好的基础。“举出生活中的例子”体现了数学来源于生活,学到的数学知识也要应用到生活当中去的理念,让学生体会到数学就在自己的身边。这样的设计不但极大地激发了学生的学习兴趣,还有利于培养学生的自主探究能力和创新能力。

学生在合作操作中,已经对解方程有了一定的基础和认识,能够大概地说出解方程的过程和依据,而又一次让同学之间同桌说一说后再全班交流体现了本节课的学习重点“理解并利用等式的性质解方程”,“为什么要减去3”突破本节课的难点。在这个环节中教师还有针对性地指导了书写的规范性和检验的过程。师生之间的共同探讨,显示了一种平等的师生关系。

练习中学生加深了对“方程的解”的认识,抓住了利用等式的性质这一依据去解方程。不同层次的练习照顾了学生之间学习水平的差异,3X=8.4对等式的性质进行了拓展,有利于发散学生的思维。最后交流学习的收获促进了学生形成积极的学习心理。

【人教版五年级数学上册《简易方程》教案优秀】相关文章:

1.简易方程教案

2.数学《简易方程》练习题

3.人教版五年级数学上册教案

4.解简易方程数学课件

5.人教版解简易方程教学设计

6.简易方程练习题

7.初中数学《方程》优秀教案

8.五年级《方程》教案

9.人教版数学上册教案

10.人教版四年级数学上册教案优秀

下载word文档
《人教版五年级数学上册《简易方程》教案优秀.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部