欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>人教版菱形教案

人教版菱形教案

2023-12-11 08:09:33 收藏本文 下载本文

“泰雅”通过精心收集,向本站投稿了12篇人教版菱形教案,这次小编在这里给大家整理后的人教版菱形教案,供大家阅读参考。

人教版菱形教案

篇1:人教版菱形教案

一、教学设计说明

本节课的主要内容是菱形的概念和性质。菱形的概念采用了直观操作的探究式教学方法,性质采用了游戏互动和几何证明相结合的探究方法,以学生的发展为本,以教师为主导学生为主体,创设主动、探究、合作的学习氛围,培养学生形象思维、逻辑思维和解决实际问题的能力,培养建模思想。通过折纸、实践探究使课堂成为有激情和智慧综合生成的过程,让学生从感官到理性、从观察探究到证明应用,由浅入深地了解、理会、应用菱形的知识,通过对数学活动的设计,尽可能调动学生的积极性,让每个学生都参与学习研究,都有表现的机会。在学生的学习方式上,采取动手实践、自主探究与合作交流相结合的方式,使学习过程直观化、形象化。

二、教学分析

1. 教学内容分析

本节课是人教版义务教育课程标准实验教科书《数学.八年级.下册》 19.2.2节第一课时的内容;作为特殊的平行四边形我们已经研究了矩形的性质和判定,菱形是从边具有特殊性的平行四边形的角度来研究的,运用类比的方法从边、对角线探究菱形的性质,菱形在我们的实际生活中有很多的应用,注意培养学生的应用意识。

2.教学对象分析

学生已具备四边形、平行四边形以及矩形的知识,经历了平行四边形、矩形性质的探究应用,有很丰厚的知识基础,学生对本节课的知识的学习有可类比的根据,学生学习起来不会很困难。

三、教学目标

知识技能

经历探究菱形的概念, 菱形的性质及其证明的过程,掌握应用菱形的性质解决问题的方法。

数学思考

通过探究活动培养学生动手实践、观察、推理的意识,发展学生的形象思维和逻辑思维能力,寻求解决问题的方法。找出菱形与四边形、平行四边形、矩形的有关知识之间的区别与联系,培养学生的逻辑推理能力和演绎能力。

解决问题

运用菱形的有关知识解决几何证明、计算和实际问题,经历探索、猜想、证明的过程,掌握菱形性质的推导方法,通过菱形性质的应用,积累解决实际问题的经验。

情感态度

通过对菱形性质的探究和反思,获得解决问题的经验和方法,养成科学的思维习惯,让学生主动参与对数学问题的讨论,享受运用知识解决问题成功的喜悦,增强自信心,同时感受科学的严谨性和数学结论的科学性。

四、重点难点

重点是探究菱形性质及应用。

难点是菱形性质的归纳总结。

五、教学媒体的选择和使用

教学媒体采用传统教具(笔、矩形纸片、剪刀、圆规、尺、菱形状的实物)与现代多媒体(计算机)相结合。

六、教学过程设计

活动1 创设情景 巧妙导课

导语:前面学习了角具有特殊性的平行四边形矩形,这节课学习边具有特殊性的平行四边形:菱形。

菱形在日常生活中是很常见的,同学们看(实物)美丽的中国结,伸缩的衣帽架等,都给我们菱形的形象,你们还在什么地方见过菱形?(学生回答:例如扑克牌中的方块等)本节课就来研究菱形(板书)

活动2 探索研究 得出概念

将一张矩形的纸片对折再对折,然后再沿图中的虚线剪下,(如图)猜想将①展开后得到的图形,利用全等图形探究菱形是一类特殊的平行四边形,一组邻边相等

菱形的概念:有一组邻边相等的平行四边形

叫平行四形

菱形的性质1:菱形的四条边都相等

活动3 类比探究 论证归纳

问题:

矩形的对角线相等,那么菱形的对角线有怎样的性质呢?

我们做一个实践探究活动。

每个小组将课前准备好的自制四边形(菱形)、线绳和量角器,任意改变其形状,探究两条对角线之间、对角线与其通过的对角之间有什么关系,分工合作进行探究。教师参与其中,和学生一起讨论。

由各小组展示探究成果。得出菱形的性质

菱形的性质2 :菱形的两条对角线互相垂直,且平分一组对角(推理证明)

3 :菱形是轴对称图形,它的对角线所在的直线是它的对称轴

4 :菱形的面积=对角线积的一半(推理证明)

推理证明由学生完成,教师注意纠正学生在推理演绎的过程中可能出现错误和不恰当的地方。

活动4 建立模型 提炼方法

例题 如图,菱形花坛ABCD的边长为20米,∠ABC=

60°,沿着菱形的对角线修建了两条小路AC、BD,求两条小路AC、BD的长和花坛的面积(分别精确到0.01m和0.01m )

分析:(如图)

由菱形对角线的性质可知

BD平分∠ABC且互相垂直,

所以∠ABO=30°∠AOB=90°由勾股定理

可求AO、BO的长,从而求出AC、BD的

长度,也就求出了菱形(花坛)的面积。

解题过程略。学生回答教师板书。

证明由学生回答板书

反思总结:实际问题要建立数学模型,用数学的知识解决问题。

篇2:人教版菱形教案

本节教学设计中突出在网络信息环境下,充分运用多媒体,特别是实物投影仪,讲究简洁、实用性与有效性;以讲学稿教学模式为载体,突出“先学后教、以学定教”,勇于创新、教学富有特色;主题鲜明、目标明确、重点突出;以人为本,凸显学生主体和常态在教学的有效性。

通过探索导航,创设问题情境,引导学生采用“自主、合作、探究”的学习方式,经历观察、操作、猜想、推理、归纳等探索发现过程,参与知识形成过程。

创造性为学生创设展示平台,满足学生喜欢表现的心理需要,获得成功体验。充分整合教育资源,辅助多媒体教学设备,丰富学生思维活动,促进学生自主探索、合作交流中由感性认知升华为理性探究,层层深入、活动鲜明,促进学生对知识的理解和应用,主动获取知识。

关注学生个体差异,预留较充足时间让学生交流、讨论,发表自己的想法、展示其思维过程;实施激励性评价,充分调动了学生的积极性;师生合作密切、协调,互动积极有效,充分展现“让不同的人在数学上得到不同的发展”的教育理念。

篇3:菱形教案

知识结构

重难点分析

本节的重点是菱形的性质和判定定理、菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是非凡的平行四边形,非凡之处就是“有一组邻边相等”,因而就增加了一些非凡的性质和不同于平行四边形的判定方法、菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础、

本节的难点是菱形性质的灵活应用、由于菱形是非凡的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质、假如得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,经常让许多学生手足无措,教师在教学过程中应给予足够重视、

教法建议

根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注重以下问题:

1、菱形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入、

2、菱形在现实中的实例较多,在讲解菱形的性质和判定时,教师可自行预备或由学生预备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识、

3、假如条件答应,教师在讲授这节内容前,可指导学生按照教材148页图433所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的把握更轻松些、

4、在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先预备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳、

5、由于菱形和菱形的性质定理证实比较简单,教师可引导学生分析思路,由学生来进行具体的证实、

6、在菱形性质应用讲解中,为便于理解把握,教师要注重题目的层次安排、

一、教学目标

1、把握菱形概念,知道菱形与平行四边形的关系、

2、把握菱形的性质、

3、通过运用菱形知识解决具体问题,提高分析能力和观察能力、

4、通过教具的演示培养学生的学习爱好、

5、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想、

6、通过菱形性质的学习,体会菱形的图形美、

二、教法设计

观察分析讨论相结合的方法

三、重点·难点·疑点及解决办法

1、教学重点:菱形的性质定理、

2、教学难点:把菱形的性质和直角三角形的知识综合应用、

3、疑点:菱形与矩形的性质的区别、

四、课时安排

1课时

五、教具学具预备

教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

六、师生互动活动设计

教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

七、教学步骤

复习提问

1、什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

2、矩形中对角线与大边的夹角为 ,求小边所对的两条对角线的夹角、

3、矩形的一个角的平分线把较长的'边分成 、,求矩形的周长、

引入新课

我们已经学习了一种非凡的平行四边形——矩形,其实还有另外的非凡平行四边形,这时可将事先按课本中图4—38做成的一个短边也可以活动的教具进行演示,如图,改变平行四边形的边,使之一组邻进相等,引出菱形概念、

讲解新课

1、菱形定义:有一组邻边相等的平行四边形叫做菱形、

讲解这个定义时,要抓住概念的本质,应突出两条:

(1)强调菱形是平行四边形、

(2)一组邻边相等、

2、菱形的性质:

教师强调,菱形既然是非凡的平行四边形,因此它就具有平行四边形的一切性质,此外由于它比平行四边形多了“一组邻边相等”的条件,和矩形类似,也比平行四边形增加了一些非凡性质、

下面研究菱形的性质:

师:同学们根据菱形的定义结合图形猜一下菱形有什么性质(让学生们讨论,并引导学生分别从边、角、对角线三个方面分析)、

生:因为菱形是有一组邻边相等的平行四边形,所以根据平行四边形对边相等的性质可以得到、

菱形性质定理1:菱形的四条边都相等、

由菱形的四条边都相等,根据平行四边形对角线互相平分,可以得到

菱形性质定理2:菱形的对角线互相垂直并且每一条对角线平分一组对角、

引导学生完成定理的规范证实、

师:观察右图,菱形 被对角线分成的四个直角三角形有什么关系?

生:全等、

师:它们的底和高和两条对角线有什么关系?

生:分别是两条对角线的一半、

师:假如设菱形的两条对角线分别为 、,则菱形的面积是什么?

生:

教师指出当不易求出对角线长时,就用平行四边形面积的一般计算方法计算菱形面积、

例2 已知:如右图, 是△ 的角平分线, 交 于 , 交 于 、

求证:四边形 是菱形、

(引导学生用菱形定义来判定、)

例3 已知菱形 的边长为 , ,对角线 , 相交于点 ,如右图,求这个菱形的对角线长和面积、

(1)按教材的方法求面积、

(2)还可以引导学生求出△ 一边上的高,即菱形的高,然后用平行四边形的面积公式计算菱形的面积、

总结、扩展

1、小结:(打出投影)(图4)

(1)菱形、平行四边形、四边形的从属关系:

(2)菱形性质:图5

①具有平行四边形的所有性质、

②特有性质:四条边相等;对角线互相垂直,且平分每一组对角、

八、布置作业

教材P158中6、7、8,P196中10

九、板书设计

标题

菱形定义……

菱形性质例2……小结:

性质定理1:…… 例3…………

性质定理2:……

十、随堂练习

教材P151中1、2、3

补充

1、菱形的两条对角线长分别是3和4,则周长和面积分别是___________、___________、

2、菱形周长为80,一对角线为20,则相邻两角的度数为___________、____________、

篇4:《菱形》的教案

《菱形》的教案

课堂引入

1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.

菱形定义:有一组邻边相等的平行四边形叫做菱形.

【强调】 菱形(1)是平行四边形;(2)一组邻边相等.

让学生举一些日常生活中所见到过的菱形的例子.

五、例习题分析

例1(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.

求证:∠AFD=∠CBE.

证明:∵ 四边形ABCD是菱形,

∴ CB=CD,CA平分∠BCD.

∴ ∠BCE=∠DCE.又CE=CE,

∴△BCE≌△COB(SAS).

∴ ∠CBE=∠CDE.

∵ 在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC

∴ ∠AFD=∠CBE.

例2(教材P108例2)略

六、随堂练习

1.若菱形的`边长等于一条对角线的长,则它的一组邻角的度数分别为.

2.已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积.

3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.

4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.

七、课后练习

1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.

2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积

篇5:菱形教案及练习题

菱形教案及练习题

一、教学目的:

1.掌握菱形概念,知道菱形与平行四边形的关系.

2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.

3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

二、重点、难点

1.教学重点:菱形的性质1、2.

2.教学难点:菱形的性质及菱形知识的综合应用.

三、例题的意图分析

本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材P108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.

四、课堂引入

1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.

菱形定义:有一组邻边相等的平行四边形叫做菱形.

【强调】 菱形(1)是平行四边形;(2)一组邻边相等.

让学生举一些日常生活中所见到过的菱形的例子.

五、例习题分析

例1(补充) 已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.

求证:∠AFD=∠CBE.

证明:∵ 四边形ABCD是菱形,

∴ CB=CD, CA平分∠BCD.

∴ ∠BCE=∠DCE.又 CE=CE,

∴ △BCE≌△COB(SAS).

∴ ∠CBE=∠CDE.

∵ 在菱形ABCD中,AB∥CD, ∴∠AFD=∠FDC

∴ ∠AFD=∠CBE.

例2 (教材P108例2)略

六、随堂练习

1.若菱形的边长等于一条对角线的长,则它的.一组邻角的度数分别为 .

2.已知菱形的两条对角线分别是6c和8c ,求菱形的周长和面积.

3.已知菱形ABCD的周长为20c,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.

4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.

七、课后练习

1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为 8c,求菱形的高.

2.如图,四边形ABCD是边长为13c的菱形,其中对角线BD长10c,求(1)对角线AC的长度;(2)菱形ABCD的面积.

篇6:高中数学菱形教案

高中数学菱形教案

一、教学目标

1.把握菱形的判定.

2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

3.通过教具的演示培养学生的学习爱好.

4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

二、教法设计

观察分析讨论相结合的方法

三、重点・难点・疑点及解决办法

1.教学重点:菱形的判定方法.

2.教学难点:菱形判定方法的`综合应用.

四、课时安排

1课时

五、教具学具预备

教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

六、师生互动活动设计

教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

七、教学步骤

复习提问

1.叙述菱形的定义与性质.

2.菱形两邻角的比为1:2,较长对角线为 ,则对角线交点到一边距离为________.

引入新课

师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?

生答:定义法.

此外还有别的两种判定方法,下面就来学习这两种方法.

讲解新课

菱形判定定理1:四边都相等的四边形是菱形.

菱形判定定理2:对角钱互相垂直的平行四边形是菱形.图1

分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.

分析判定2:

师问:本定理有几个条件?

生答:两个.

师问:哪两个?

生答:(1)是平行四边形(2)两条对角线互相垂直.

师问:再需要什么条件可证该平行四边形是菱形?

生答:再证两邻边相等.

(由学生口述证实)

证实时让学生注重线段垂直平分线在这里的应用,

师问:对角线互相垂直的四边形是菱形吗?为什么?

可画出图,显然对角线 ,但都不是菱形.

菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):

注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.

例4 已知: 的对角钱 的垂直平分线与边 、分别交于 、,如图.

求证:四边形 是菱形(按教材讲解).

总结、扩展

1.小结:

(1)归纳判定菱形的四种常用方法.

(2)说明矩形、菱形之间的区别与联系.

2.思考题:已知:如图4△ 中, ,平分 , , , 交 于 .

求证:四边形 为菱形.

八、布置作业

教材P159中9、10、11、13(2)

九、板书设计

十、随堂练习

教材P153中1、2、3

篇7:数学菱形教案

一、活动目标

1、通过各种拼图游戏,感知菱形的多种拼法。

2、发展动手能力及想象能力,激发参与游戏的积极性。

3、能区分菱形、三角形、圆形、正方形。

二、活动准备

1、菱形泡棉每人三个。

2、教师展示图片(三角型拼成的小鱼、圆形拼成的毛毛虫、方型拼成的机器人)。

3、大三角形、圆形、正方形各一,人手一个图形;教师用大菱形图形三个

4、每组一张操作图,水笔。

三、活动过程

(一)出示三个大图形(三角形、圆形、正方形)

1、小朋友,你们认识它们吗?

2、图形娃娃找朋友(分类计数)

(二)出示图片(小鱼、毛毛虫、机器人)

1、教师用神秘的口吻告诉幼儿:“图形娃娃觉得小朋友真是聪明,所以它们还为我们带来了新朋友,看,它们是谁?”

2、师:谁来告诉我它们是由什么图形拼成的呢?

(三)介绍新朋友——菱形

1、(教师出示菱形)看,图形乐园里来了位新朋友,这是什么图形?

2、我和菱形娃娃做游戏

1)听口令找朋友(如:3个小朋友、5个小朋友等)

2)用3个菱形来尝试拼图。

3、幼儿每人从篓框里拿出三个相同颜色的菱形,自由操作菱形娃娃。

4、请个别幼儿上来展示自己拼的成果,并说说自己拼的是什么。其余幼儿将自己的结果粘贴在每组的纸上。教师展示其中一组结果,请幼儿说说自己拼的是什么。

5、幼儿将拼图展示给客人老师,并说己拼的是什么图形。

(四)延伸活动:

1、教师出示操作图,请幼儿根据图上的形状用菱形去拼(按组进行),并且请组里的一位幼儿进行记录。

2、巡回指导幼儿拼图情况。

四、活动结束

1、

2、

篇8:数学菱形教案

一、教学目标

1.掌握菱形的判定.

2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

3.通过教具的演示培养学生的学习兴趣.

4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

二、教法设计

观察分析讨论相结合的方法

三、重点·难点·疑点及解决办法

1.教学重点:菱形的判定方法.

2.教学难点:菱形判定方法的综合应用.

四、课时安排

1课时

五、教具学具准备

教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

六、师生互动活动设计

教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

七、教学步骤

【复习提问】

1.叙述菱形的定义与性质.

2.菱形两邻角的比为1:2,较长对角线为 ,则对角线交点到一边距离为________.

【引入新课】

师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?

生答:定义法.

此外还有别的两种判定方法,下面就来学习这两种方法.

【讲解新课】

菱形判定定理1:四边都相等的四边形是菱形.

菱形判定定理2:对角钱互相垂直的平行四边形是菱形.图1

分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.

分析判定2:

师问:本定理有几个条件?

生答:两个.

师问:哪两个?

生答:(1)是平行四边形(2)两条对角线互相垂直.

师问:再需要什么条件可证该平行四边形是菱形?

生答:再证两邻边相等.

(由学生口述证明)

证明时让学生注意线段垂直平分线在这里的应用,

师问:对角线互相垂直的四边形是菱形吗?为什么?

可画出图,显然对角线 ,但都不是菱形.

菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):

篇9:数学菱形教案

教学目标(知识、能力、教育) 1. 掌握菱形、矩形、正方形的概念,了解它们之间的关系.

2. 掌握 菱形、矩形、正方形、的有关性质和常用的判别方法.

3. 进一步掌握综合法的证明方法,能够证明与矩形、菱形以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论.

4. 体会在证明过程中,所运用的归纳、转化等数学思想方法

教学重点 菱形、矩形、正方形的概念及其性质

教学难点 数学思想方法的体会及其运用。

教学媒体 学案

教学过程

一:【课前预习】

(一):【知识梳理】

1.性质:

(1)矩形:①矩形的 四个角 都是直角.②矩形的对角线相等.③矩形具有平行四边形的所有性质.

(2)菱形:①菱形的四条边都相等.②菱形的对角线互相垂直,并且每条对角线平分一组对角.③具有平行四边形所有性质.

(3)正方形:①正方形的四个角都是直角,四条边都相等.② 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对 角.

2.判定:

(1)矩形:①有一个角是直角的平行四边形是矩形.②对角线相等的平行四边形是矩形.③有三个角是直角的四边形是矩形.

(2)菱形:①对角线互相垂直的平行四边形是菱形.②一组邻边相等的平行四边形是菱形.③四条边都相等的四边形是菱形.

(3)正方形:①有一个角是直角的柳是正方形. ②有一组邻边相等的矩形是正方形.③对角线相等的菱形是正方形.④对角线互相垂直的矩形是正方形.

3.面积计算:

(1)矩形:S=长(2)菱形: ( 是对角线)

(3)正方形:S=边长2

4.平行四边形与特殊平行四边形的关系

(二):【课前练习】

1.下列四个命题中,假命题是( )

A.两条对角线互相平分且相等的四边形是正方形

B.菱形的一条对角线平分一组对角

C.顺次连结四边形各边中点所得的四边形是平行四边形

D.等腰梯形的两条对角线相等

2.将矩形ABCD沿AE折叠,得到如图所示的图形,已知 =60,则AED的大小是( )

A.60. B.50. C.75. D.55

3.正方形的对角线长为a,则它的对角线的交点到各边的距离为( )

A、22 a B、24 a C、a2 D、22 a

4.如图,是根据四边形的不稳定性制作的边长均为15㎝的可活动菱

形衣架.若墙上钉子间的距离AB=BC=15㎝,则1=_____度

5.师傅做铝合金窗框,分下面三个步骤进行

(1)如图,先裁出两对符合规格的铝合金

窗料(如图①),使AB=CD,EF= GH;

(2)摆放成如图②的四边形,则这时窗框

的形状是 ,根据的数学道理是____.

(3)将直角尺靠紧窗框的一个角(如图③)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④)说明窗框合格,这时窗框是_________,根据的数学道理是______ ________

二:【经典考题剖析】

1.下列四边形中,两条对角线一定不相等的是( )

A.正方形B.矩形C.等腰梯形D.直角梯形

2.周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为( )

A.98 B. 96 C.280 D.284

3.如图,在菱形ABCD中,BAD=80 ,AB的垂直平分线EF交

对角线A C于点F、E为垂足,连结DF,则CDF等于( )

A.80 B.70 C.65 D.60

4.如图,小明想把平面镜MN挂在墙上,要使小明能从镜子里看

见自己的脚?问平面镜至多离地面多高?(已知小明身高1.60米)

5.如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、

DA的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由,

添加的条件__________,理由:

三:【课后训练】

1.正方形具有而矩形不一定具有的性质是( )

A.四个角都是直角;B.对角线相等;C.对角线互相平分;D.对角线互相垂直

2.如图 ,一张矩形纸片,要折叠出一个最大的 正方形,小明把矩形

的一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四

边形ABEF就是一个最大的正方形,他的判断方法是________-

3.如图,在菱形ABCD中,AC、BD相交于点 O,且CA:BD=l:3 ,若AB=2,求菱形ABCD的面积.

5.在一次数学兴趣小组活动中,组长将两条等宽的长纸条倾斜地重叠着,并问同学,重叠部 分是一个什么样的四边形?同学说:这是一个平行四边形.乙同学说:这是一个菱形.请问:你同意谁的看法要解决此题,需建构数学模型,将实际问题转化成数学问题来解决,即已知:如图,四边形ABCD中,AB∥CD,AD∥BC,边CD与边BC上的高相等,试判断四边形 ABCD的形状.

6.如图,在矩形AB CD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动;点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P对同时出发,用t (秒)表示移动的时 间(0

(1)当t为何值时, △QAP为等腰直角三角形?

(2)求四边形QAPC的面积,提出一个与计算结果有关的结论。

篇10:菱形数学八年级上册教案

菱形人教版数学八年级上册教案

一、教学目的:

1、掌握菱形概念,知道菱形与平行四边形的关系;

2、理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积;

3、通过运用菱形知识解决具体问题,提高分析能力和观察能力;

4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想;

二、重点、难点

1、教学重点:菱形的性质1、2;

2、教学难点:菱形的性质及菱形知识的综合应用;

三、例题的意图分析

本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材P108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题、此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识;

四、课堂引入

1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

2、(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的`边,使之一组邻边相等,从而引出菱形概念;

《18、2、2菱形》课时练习含答案;

5、在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是( )

A、矩形 B、菱形 C、正方形 D、梯形

答案:B

知识点:等边三角形的性质;菱形的判定

解析:

解答:用两个边长为a的等边三角形拼成的四边形,它的四条边长都为a,根据菱形的定义四边相等的四边形是菱形、根据题意得,拼成的四边形四边相等,则是菱形、故选B、

分析:此题主要考查了等边三角形的性质,菱形的定义、

6、用两个边长为a的等边三角形纸片拼成的四边形是( )

A、等腰梯形 B、正方形 C、矩形 D、菱形

答案:D

知识点:等边三角形的性质;菱形的判定

解析:

解答:由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形、由题意可得:得到的四边形的四条边相等,即是菱形、故选D、

分析:本题利用了菱形的概念:四边相等的四边形是菱形、

《菱形的性质与判定》练习题

一 选择题:

1、下列四边形中不一定为菱形的是( )

A、对角线相等的平行四边形 B、每条对角线平分一组对角的四边形

C、对角线互相垂直的平行四边形 D、用两个全等的 等边三角形拼成的四边形

2、下列说法中正确的是( )

A、四边相等的四边形是菱形

B、一组对边相等,另一组对边平行的四边形是菱形

C、对角线互相垂直的四边形是菱形

D、对角线互相平分的四边形是菱形

3、若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )

A、菱形 B、对角线互相垂直的四边形 C、矩形 D、对角线相等的四边形

篇11:八年级下册数学菱形第一课时教案

根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:

1.菱形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。

2.菱形在现实中的实例较多,在讲解菱形的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.

3. 如果条件允许,教师在讲授这节内容前,可指导学生按照教材148页图4-33所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.

4. 在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.

5. 由于菱形和菱形的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.

6.在菱形性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。

一、教学目标

1.掌握菱形概念,知道菱形与平行四边形的关系.

2.掌握菱形的性质.

3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

4.通过教具的演示培养学生的学习兴趣.

5.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

6.通过菱形性质的学习,体会菱形的图形美.

二、教法设计

观察分析讨论相结合的方法

三、重点·难点·疑点及解决办法

1.教学重点:菱形的性质定理.

2.教学难点:把菱形的性质和直角三角形的知识综合应用.

3.疑点:菱形与矩形的性质的区别.

四、课时安排

1课时

五、教具学具准备

教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

六、师生互动活动设计

教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

七、教学步骤

【复习提问】

篇12:八年级下册数学菱形第一课时教案

本节的重点是菱形的性质和判定定理。菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

本节的难点是菱形性质的灵活应用。由于菱形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

【人教版菱形教案】相关文章:

1.人教版菱形的性质教学设计课件

2.初二数学教案《菱形》

3.教案人教版

4.人教版教案

5.菱形的判定说课稿

6.人教版高中生物教案

7.人教版高中语文教案

8.数学教案-菱形教学示例 第二课时

9.人教版小学美术教案

10.人教版数学上册教案

下载word文档
《人教版菱形教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部