欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>北师大五下册数学教案

北师大五下册数学教案

2023-05-04 08:21:50 收藏本文 下载本文

“蓝小默”通过精心收集,向本站投稿了12篇北师大五下册数学教案,以下是小编整理后的北师大五下册数学教案,欢迎阅读分享。

北师大五下册数学教案

篇1:北师大五下册数学教案

五下册数学教案:欣赏设计

教学分析:

注意抓住学生的心理特点,结合生活实际为学生创设新颖、生动、富有情趣的生活情境,让学生在现实情景中学习数学,使学生感受到数学与生活的密切联系,从而激发学生学习的兴趣和积极性;

教学目标:

1.通过欣赏与设计图案,使学生进一步熟悉已学过的对称、平移、旋转等现象。

2.欣赏美丽的对称图形,并能自己设计图案。

3.学生感受图形的美,进而培养学生的空间想象能力和审美意识。

重点难点:

1.能利用对称、平移、旋转等方法绘制精美的图案。

2.感受图形的内在美,培养学生的审美情趣。

教学方法:

自主探究 和合作交流

教学过程:

一、情境导入

利用课件显示课本第7页四幅美丽的图案,配音乐,让学生欣赏。

二、学习新课

(一)图案欣赏

1.伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?

2.让学生尽情发表自己的感受。

三、巩固练习

(一)反馈练习

1.这个图案我们应该怎样画?

2.仔细观察这几个图案是由哪个图形经过什么变换得到的?

(二)拓展练习

四、全课总结

对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉及到其它领域,希望同学们平时注意观察,都成为杰出的设计师。

五、布置作业

欣赏

尽情发表自己的感受。

(二)说一说

1.上面每幅图的图案是由哪个图形平移或旋转得到的?

2.上面哪幅图是对称的?先观察讨论,再进行交流。

完成第8页3题。

1.分别利用对称、平移和旋转创作一个图案。

2.交流并欣赏。说一说好在哪里?

教材第9页第5题。

学生感受图形的美,进而培养学生的空间想象能力和审美意识。

板书设计:

欣赏和设计

图案1 图案2

图案3 图案4

对称、平移和旋转知识有广泛的应用。

五下册数学教案:解方程

教学目标:

1、学生通过观察、猜测等数学活动,能够理解方程的解及解方程。

2、培养学生的数学思想。

重点难点:

学生理解方程的解及解方程这两个定义。

教学过程:

一、练习导入

判断下列各式是不是方程,并说出你的理由。

X+24=57 3X÷8

X=0 28<16+14

师:今天,我们继续学习关于方程的知识。

二、新授

1、教师板书:100+X=250

问:X=?

2、小组讨论

有几种求X=?的方法?

3、全班交流

X的值是多少?你是怎么求出的?

此环节给学生提的要求是:讲清解题过程,语言表述完整、清楚。

4、教师要根据学生的回答适当板书求X的过程。

(1) 想:100 +( )= 250

(2) 250 — 100 = (利用“加数 = 和 — 加数”这个关系式。)

(3) 让两边同时减去100,就能得出X=150

5、讨论

(1)X=150是100+X=250这个方程的什么?

(2)以上板书的3种方法为了求X的值,我们可以把求X的值的过程叫作什么?

6、读定义(书57页):方程的解

解方程

三、练习

1、教科书57页 做一做

2、教科书63页 4题

四、全课总结

这节课,我们学习了什么?

五下册数学教案:梯形面积

教学目标:

1、在平行四边形、三角形面积推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。

2、会正确、较熟练的运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力;。

3、通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,发展学生的空间观念。

4、渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。

教学重点:

理解并掌握梯形面积公式,会计算梯形的面积。

教学难点:

自主探究梯形面积公式。

教具准备:

CAI、完全一样的梯形若干个。

学具准备:

每生准备两个完全一样的梯形。(有等腰、直角、一般)

课前预习:

梯形各部分、直角梯形、等腰梯形、平行四边形面积、三角形面积、渗透梯形方法、(你能不能把梯形转化成前面学过的图形,需要用笔直尺、画一画。)小组合作大胆交流、每人都要说自己的想法。直到老师说做好为止。

课前准备:

谁来介绍你们的姓名、年龄、学校、爱好等等,让大家都来了解你。

我们先介绍这,我相信同学们在课堂上的表现一定会让所有的老师都记住你。

教学过程:

一、创设情境,激发兴趣。

(出示情境图)。

谈话:同学们,今天李老师和你们一起来参观王伯伯的甲鱼池,请仔细观察,你能发现哪些数学信息?

生:1号甲鱼池的形状是梯形的,每平方米放养甲鱼苗200只。

师:根据发现,你能提出什么数学问题?

学生观察情境图,提出问题。

生:1号甲鱼池的面积有多大?

师:你提的问题很好,同学们想不想知道。谁还能提出什么问题?

生:1号甲鱼池能放养多少甲鱼苗?

二、自主探究梯形的面积计算方法。

1.教师:刚才同学们提的问题都很有价值。(课件)我们来看这两个问题。要求1号甲鱼池的面积,也就是求什么图形的面积?

生:梯形。

师:你会求这个梯形的面积吗?那么怎样求梯形的面积呢?这节课我们就一起来探究梯形的面积。板书课题:梯形的面积。

教师:如果我用这个梯形纸片代表甲鱼池的面积,想一想,你能用什么办法求出这个梯形纸片的面积?请你先独立思考,然后在小组内交流一下你的方法。

2.小组讨论交流,教师巡视了解。

3.展示、汇报交流。

师:哪个小组先来说说你们的方法。拿着你的梯形到前面来说给同学听一听。

生1:(方法1)——把梯形分成平行四边形和三角形,分别计算出它们的面积,再求出它们的面积和。

师:你觉得这个方法行吗?大家看,这个小组的方法是把梯形分割成平行四边形和三角形来求,谁是这样想的?

师:谁有不同的方法?

生2:(方法2)——把梯形分成两个三角形,求出每个三角形的面积,再计算出它们的面积和。

师:你这个方法也挺好。这个小组是把梯形分割成两个三角形来求梯形面积,真是些爱动脑筋的好孩子。和他方法一样的同学请举手。谁的方法和他们都不一样?

生3:(方法3)——把两个完全一样的梯形拼在一起,拼成一个平行四边形,这个梯形是平行四边形面积的一半。平行四边形的面积等于底乘高再除以2就是梯形的面积。

师:这个同学说的太好了。大家认为这个方法好不好?

这个同学的方法是把两个完全一样的梯形拼成一个平行四边形,平行四边形的面积等于底乘高,这个底是谁的底?高呢

生:平行四边形的底,平行四边形的高。

师:平行四边形的面积等于底乘高再除以2就是梯形的面积。

师:大家看,这位同学用了这样两个完全一样的梯形拼成一个平行四边形。是不是任意两个完全一样的梯形都能拼成一个平行四边形?

师:大家用手中的梯形拼一拼,谁再上来拼一拼,再说给同学们听听。

师:看来任意两个完全一样的梯形都能拼成一个平行四边形。每个梯形的面积就是平行四边形面积一半。大家理解这个方法了吗?还有不同的吗?

生4(方法四):我用两个完全一样的直角梯形拼成了长方形,一个梯形的面积就是这个长方形面积的一半。

师:这个方法是不是所有的两个完全一样的梯形都可以用。

生:是两个直角梯形。

师汇总:对,刚才同学们想出了这些方法来求梯形面积,你们真了不起。下面我们来看这些方法。(课件演示)

第一种是把梯形分割成一个三角形和一个平行四边形;

第二种是把梯形分割成两个三角形;

第三种把两个完全一样的梯形拼成了一个平行四边形。

表扬:这三种方法都是把梯形转化成已学过的图形来解决。同学们能够运用转化的方法,你们真的很棒。这种方法很重要,在以后的学习中我们会经常用到。

我们前面学过的长方形、正方形、平行四边形、三角形都有自己的面积计算公式,那么梯形也有自己的面积计算公式。

师:大家先来猜想。你认为梯形的面积可能与梯形的什么条件有关系?

生:上底和下底,高

生:与腰有关。

师:梯形的面积到底与它们有什么关系呢?你们想不想研究?

三、探究操作,推导出梯形面积公式

(一)出示问题,明确目标

我们首先来看这三种方法,根据我们现有水平,由于前两种方法对我们来说研究起来确实有困难,下面我们就采用第3种方法来深入研究梯形的面积。

(点课件)大家一起来看这种方法,同学们用两个完全一样的梯形拼成平行四边形,梯形的面积等于拼成平行四边形面积的一半。

师板书:两个完全一样的梯形拼成平行四边形

梯形的面积=拼成平行四边形面积÷2 =底×高÷2。

拼成平行四边形的底会与梯形的上底、下底有什么关系?拼成平行四边形的高和梯形的高又有什么关系?根据这些关系,你能推导出梯形面积计算方法吗?

师:下面就请同学们用手中的梯形拼一拼,想一想,怎样推导梯形面积计算公式。请同学们在小组内研究研究。

(二)自主探究

合作学习

小组内讨论交流。

学生分组动手操作,教师巡视指导。

教师参与到每个小组中进行讨论和指导,以便发现和收集信息。

(三)成果交流,质疑解难

1.全班展示回报

师:哪个小组的同学说一说你们小组是怎么研究的?拿着你手中的纸片到前面跟同学说一下。

生:两个完全一样的梯形拼成一个平行四边形,梯形的面积是平行四边形面积的一半。平行四边形的底就是梯形的(上底+下底),平行四边形的高就是梯形的高。推导出梯形的面积公式就是梯形的(上底+下底)乘高除以2。

师表扬:这个小组研究的非常好,推导出梯形面积计算方法。大家听明白了吗?

师:你们也是这样想的吗?哪个小组再来说说你们的做法?

2. 师:刚才同学们经过研究,推导出梯形面积计算方法。下面我们一起来回顾梯形面积的推导过程。(课件演示转化过程)

梯形面积=平行四边形面积÷2 梯形面积=底×高÷2 师:拼成的平行四边形的底是梯形的上底与下底的和,平行四边形的高与梯形的高相等,就是(上底+下底)×高÷2

师:这样我们就得到了梯形的面积公式是梯形面积=(上底+下底)×高÷2

3.师:通过研究,我们发现拼成的平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,谁再来说说梯形面积计算方法是什么?生说师板书。

板书面积公式:梯形的面积=(上底+下底)×高÷2。

提问:(上底+下底)×高算的是什么?为何要除以2?。

4.学习字母表达式

谈话:谁能用字母表示?说说每个字母分别表示什么?

师:S=(a+ b )×h ÷2(板书)

四、运用知识,解决情景问题。

师:这节课同学们研究了怎样求梯形的面积。推导出求梯形面积计算公式,现在我们就运用所学知识来解决前面提出的两个问题:1号甲鱼池的面积是多少?能放养多少只甲鱼苗?(课件出示题目)

请学生做在练习本上。两名学生板演,其余学生独立练习。全班交流。

五、随堂检测,巩固目标。

师:看来同学们会运用梯形面积计算方法解决实际问题。接下来我们要向自己挑战,有没有信心。

挑战自我:

一、判断

1、两个梯形就可以拼成平行四边形。

2、梯形的面积一定比平行四边形的面积小。()

3、在下图中平行四边形的面积是梯形面积的2倍。()

师:同学们判断的很好,理解问题很透彻,希望同学们向更高的目标挑战。下面看看实际生活中的梯形,你能计算出他们的面积吗?

二、(挑战自我)

解决问题

1、学校操场要建一个梯形指挥台,平面是梯形,上底是5米,下底8米,高6米,

这个梯形台的平面是多少平方米?

2、一块梯形的墙,上底15米,下底比上底多5米,高是6米,这块墙的面积是多少平方米?

3、一个梯形,上底和下底的和是36cm,高12cm,它的面积是多少?

师:显示我们聪明才智的机会到了,请同学们大显身手。

4、王大爷用50米长的篱笆靠墙围了一个羊圈(如图)。求这个梯形羊圈的面积。

学生独立练习,全班交流。

六、小结。

通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形面积公式。能灵活运用知识解决问题,通过这节课的学习你有哪些收获?

同学们收获这么多,你们认为学习快乐吗?希望同学们快乐地学习,快乐地成长,谢谢大家。向在座的老师说再见。

猜你感兴趣:

篇2:北师大七年级下册数学教案

[教学目标]

1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力

2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题

[教学重点与难点]

重点:邻补角与对顶角的概念.对顶角性质与应用

难点:理解对顶角相等的性质的探索

[教学设计]

一.创设情境 激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角

在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

观察剪刀剪布的过程,引入两条相交直线所成的角。

学生观察、思考、回答问题

教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?

教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,

二.认识邻补角和对顶角,探索对顶角性质

1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配

共能组成几对角?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用

几何语言准确表达

;

有公共的顶点O,而且 的两边分别是 两边的反向延长线

2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)

3学生根据观察和度量完成下表:

两条直线相交 所形成的角 分类 位置关系 数量关系

教师提问:如果改变 的大小,会改变它与其它角的位置关系和数量关系吗?

4.概括形成邻补角、对顶角概念和对顶角的性质

三.初步应用

练习:

下列说法对不对

(1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角

(2) 邻补角是互补的两个角,互补的两个角是邻补角

(3) 对顶角相等,相等的两个角是对顶角

学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象

四.巩固运用例题:如图,直线a,b相交, ,求 的度数。

[巩固练习](教科书5页练习)已知,如图, ,求: 的度数

[小结]

邻补角、对顶角.

[作业]课本P9-1,2P10-7,8

[备选题]

一判断题:

如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角( )

两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补( )

二填空题

1如图,直线AB、CD、EF相交于点O, 的对顶角是 , 的邻补角是

若 : =2:3, ,则 =

2如图,直线AB、CD相交于点O

篇3:6年级下册数学教案北师大

教学目标:

1.能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单

的问题,使学生感受到数学与生活的密切联系

2.通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。

3.结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

教学重点:

使学生认识圆柱侧面展开图的多样性。

教学难点:

学生能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

教学用具:

课件、圆柱体的瓶子、剪子

教学过程:

一、创设情境,引起兴趣。

拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)

二、自主探究,发现问题。

研究圆柱侧面积

1、独立操作:利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。

2、观察对比:观察展开的图形各部分与圆柱体有什么关系?

3、小组交流:能用已有的知识计算它的面积吗?

4、小组汇报。 (选出一个学生已经展开的图形贴到黑板上)

重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

长方形的面积=圆柱的侧面积即 长×宽 =底面周长×高,所以,

圆柱的侧面积=底面周长×高 S 侧 == C × h

如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h 如果圆柱展开是平行四边形,是否也适用呢?

学生动手操作,动笔验证,得出了同样适用的结论。(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

研究圆柱表面积

1、现在请大家试着求出这个圆柱体茶叶罐用料多少。

学生测量,计算表面积。

2、圆柱体的表面积怎样求呢?

得出结论:圆柱的表面积=圆柱的侧面积+底面积×2

3、动画:圆柱体表面展开过程

三、实际应用

1、解决书上的例题

2、填空

圆柱的侧面沿着高展开可能是( )形,也可能是(

是因为( )

3、要求一个圆柱的表面积,一般需要知道哪些条件(

4、教材第六页试一试。

四、板书

圆柱体的表面积

圆柱的侧面积=底面周长×高 →S侧=ch

长方形面积 = 长 ×宽

圆柱的表面积=圆柱的侧面积+底面积×2

五、随堂反思:

篇4:6年级下册数学教案北师大

教学目标:

1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。

2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

教学重点:

圆柱体体积的计算

教学难点:

圆柱体体积公式的推导

教学用具:

圆柱体学具、课件

教学过程:

一、复习引新

1.求下面各圆的面积(回答)。

(1)r=1厘米; (2)d=4分米; (3)C=6.28米。

要求说出解题思路。

2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的? 指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。

3.提问:什么叫体积? 常用的体积单位有哪些?

4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

二、探索新知

1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)

2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。

3.公式推导。(可分小组进行)

(1)请同学指出圆柱体的底面积和高。

(2)回顾圆面积公式的推导。(切拼转化)

(3)探索求圆柱体积的公式。

根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。

(4)讨论并得出结果。

你能根据这个实验得出圆柱的体积计算公式吗? 为什么? 让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积相等,这个长方体的高与圆柱体的高相等。因为长方体的体积等于底面积乘高,所以,圆柱体的体积计算公式是:圆柱的体积=底面积×高 (板书:

圆柱的体积=底面积×高) 用字母表示:

(板书:V=Sh)

(5)小结。

圆柱的体积是怎样推导出来的? 计算圆柱的体积必须知道哪些条件?

4.教学算一算

审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用什么单位?

5. 教学“试一试”

小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积? 如果知道d呢? 知道C呢? 知道r、d、C,都要先求出底面积再求体积。

三、巩固练习

练习册练习

四、课堂小结

这节课学习了什么内容? 圆柱的体积怎样计算,这个公式是怎样得到的? 指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱转化为长方体)得出了圆柱体的体积计算公式V=Sh。

五、随堂反思:

篇5:北师大版三年级下册数学教案

教学目标:

1.结合电影院的座位问题,经历自主探索乘数末尾有0的乘法的计算方法的过程。

2.会用简便方法计算乘数末尾有0的乘法。

3.在自主探索简便算法的过程中,体验学习的乐趣,增强学好数学的信心。

教学重点:

会用简便方法计算乘数末尾有0的乘法。

教学难点:

在自主探索简便算法的过程中,体验学习的乐趣,增强学好数学的信心。

课前准备:

把电影院的2个问题分别写在小黑板上。

教学过程:

一、问题情境

1.师生谈话由学生最近看过什么电影,在哪个电影院看的,电影院每排有多少个座位,有多少排,引出电影院座位问题。

师:同学们,老师知道你们都喜欢看电影,哪个同学说一说你最近看过什么电影?是在哪个电影院看的?

请几个同学介绍。

师:谁仔细观察过,你去的电影院每排大约有多少个座位?有多少排?

生发言,教师对注意观察电影院座位的学生给予表扬。

师:__同学真不错,到电影院不光是看电影,还特别注意观察电影院的座位情况。今天我们就来解决一个电影院的座位问题。

用小黑板出示问题(1)。

2.用小黑板出示问题(1),让学生读题,了解其中的信息和要解决的问题。

师:请同学们认真读题,说说从中你了解到哪些数学信息?要解决的问题是什么?

学生说电影院原来的座位情况和问题。

二、解决问题

1.提出问题(1),师生共同列出算式,鼓励学生自主计算。

师:求原来一共有多少个座位,怎样列式呢?

学生说,教师板书:36×30=

师:36×30,这个算式你们都会计算,用自己的方法试着算一算吧!

学生自主计算,教师巡视,了解学生的计算方法。

2.交流学生个性化的计算方法,鼓励学生大胆介绍自己的想法和计算过程。

师:谁来说一说你是怎么想的?怎么计算的?

学生可能会有以下方法

(1)先算10排共有多少个座位。

36×10=360(个)

360×3=1080(个)

(2)把30看成3个十,36乘3个十等于108个十,也就是1080。所以,36×3=1080(个)

(3)用竖式计算。

第(2)种方法如果没有出现,教师可以交流,并接着列出竖式的简便算法。

如果出现,教师就结合学生的算法介绍简便算法。

3.介绍竖式计算的简便算法。

师:36乘30,可以把30看成3个十,这样写竖式。

边说边板书

师:计算时,先算36乘3,得108,也就是108个十,在108的前面添上一个0。

边说边完成板书

师:两位数乘整十数的简便算法,说简单点就是先乘0前面的数,再在积的后面添0。你们觉得这样写怎么样?

生:这样写很简便。

师:刚才我们一起求出了原来这个电影院的座位数。现在这个电影院为了方便更多的小朋友同时看电影,增加了一些座位,我们一起来算一算现在这个电影院一共有多少个位?

用小黑板出示问题(2)。

4.教师谈话,并说明要解决的问题。然后,用小黑板出示问题(2),让学生列出算式,用口算,说一说是怎样想的。

师:谁来说一说现在这个电影院的座位情况?

生:这个电影院现在每排有40个座位,还是有30排。

师:谁来说一说怎么列式?

生:40×30。

师:口算结果是多少?

学生可能会直接说出结果1200。

师:说一说你是怎样想的。

学生可能回答

把40看成4个十,4个十乘30等于120个十,就是1200。

先算4乘3等于12,再在12的后面添两个0,就是1200。

教师重点指导口算方法。

5.教师介绍竖式计算,边说边写出竖式。

师:整十数乘整十数,可以直接利用口诀计算。先把整十数十位上的数相乘,再在积的后面添两个0。用竖式可以这样算。

教师介绍竖式的简便算法。

三、尝试练习

1.教师在黑板上写。

出试一试中的6道题,让学生独立计算,然后进行交流。

师:同学们刚才用不同的方法解决了电影院的座位问题,而且学会了用竖式计算乘数末尾有0的乘法。现在,请同学们计算一下黑板上的几道题,看谁算得又快又正确。

学生自主计算,请两个人到黑板上板演。64×30和99×99

10×10不要求有竖式。

全班交流。

2.提出议一议的问题,启发学生根据三道题的乘数和积回答问题。

师:观察这几道题中乘数和积,想一想,两位数乘两位数,积最多是几位数,最少是几位数?说一说你判断的理由。

学生可能回答

两位数乘两位数,积最多是四位数。因为99是的两位数,99×99=9801,所以两位数乘两位,积最多是四位数。

两位数乘两位数,积最小是三位数。因为10是最小的两位数,10×10=100,100是个三位数。所以,两位数乘两位数的积最小是三位数。

学生如果有困难,教师启发或参与交流。

四、课堂巩固

1.练一练第1题。

(1)师生一起估计积是几位数。要给学生充分地表达不同想法的机会。

师:看来同学们不但学会了两位数乘两位数的计算方法,又知道积最多是几位数,最少是几位数。下面看练一练第1题,我们一起估计一下积是几位数。说一说你是怎样想的。

学生可能会出现不同说法。

26×40可能出现两种意见

积最多是三位数,因为十位上的两个数2乘4等于8,不进位;

积最多是四位数。把26看成25,40看成4个十,25乘4个十等于100个十,就是1000,所以积一定是四位数。

要给学生充分的讨论时间。

74×36,也可以有两种算法。

因为十位上的两个数7乘3等于21,要进位,所以积一定是四位数;

因为70×30=2100,所以,70×36的积一定是比2100大的四位数。

(2)鼓励学生自己计算,检验估算的结果。

使学生了解判断积是几位数的一般方法:先看两位数十位上的数,十位上的两个数相乘超过或等于10,积一定是四位数。

师:好!现在请同学们自己计算一下,看看估计的结果对不对。

学生计算后,再总结估计积是几位数的方法:两位数乘两位数,十位上的两个数相乘进位,积一定是四位数。

2.练一练第2题,口算比赛。

师:这节课同学们表现得都非常棒,下面我们举行一个口算竞赛,看谁是咱们班的“口算能手”!

3.练一练第3题,先读题明确图意后,让学生独立解答,再交流解答问题的过程和结果。

师:下面让我们运用新知识来解决生活中的一些实际问题吧!请看练一练第3题。你了解到哪些数学信息?要解决什么问题?

学生回答后,自己列式计算,然后交流。

4.练一练第4题让学生先读题,弄懂题意,再计算。交流时,重点说一说是怎样判断的。

五、课堂小结

篇6:2022北师大五年级下册数学教案

教学目标:

1、能够认识长方体和正方体,具有初步的立体空间想象能力。

2、结合具体的多个长方体和正方体的堆放情景,经历探究多个长方体和正方体堆放时露在外面表面积的过程,能够准确的计算出多个长方体和正方体堆放时露在外面的表面积。

3、使学生感受到长方体和正方体的表面积与生活的密切联系,培养学习数学的良好兴趣。

重点难点:

能够准确的计算出多个长方体和正方体堆放时露在外面的表面积。

教学方法:

师生共同归纳和推理。

教学准备:

多个正方体盒子

教学过程:

一、复习导入

教师让学生顾回上一节课学习的长方体和正方体的表面积,并对学生进行提问。

学生回答:长方体的表面积=(长×宽+长×高+高×宽)×2;正方体的表面积=边长×边长×6)

二、讲授新课

教师出示课本插图1,让学生观察一个棱长是50厘米箱子放在墙角处时,有几个面露在外面,露在外面的面积是多少平方厘米?

学生观察图片并计算露在外面的面积是多少平方厘米?

教师提问学生回答这个问题。(露在外面的面有3个;露在外面的面积是50×50×3=750(平方厘米)。

教师出示插图2,让学生观察4个棱长为50厘米的正方体纸箱堆放在墙角处,有几个面露在外面?露在外面的面积是多少?

学生从正面、侧面、上面分别观察数一数露在外面的有几个面?并计算一下露在外面的面积是多少?

教师提问学生回答这个问题,(有9个面露在外面,露在外面的面积是50×50×9)

教师让学生用自己的4个正方体学具换一种堆放方式来试一试,露在外面的面积是否有变化,同桌之间相互讨论交流。

三、课堂小结

同学们,这一节课你学到了哪些知识?(提问学生回答)

板书设计:

露在外面的面

从正面、侧面、上面看一看,一共有几个面露在外面?

2022北师大五年级下册数学教案2

教学目标:

1、经历探索的过程,在操作、观察、分析等活动中,综合运用有关知识,解决露在外面的面的数量问题,并会求露在外面的面的面积。

2、能做到有序、多角度去观察,并在经历中发现规律。

3、在操作与交流中,体会归纳、替换的思想方法,进一步发展空间观念。

教学准备:

多媒体课件,每组8个完全相同的小正方体,记录卡,纸板等

教学过程:

一、谈话引入,运用方法

1、师:请看大屏幕,这是一组立体图形,看谁能最先看出:它是由几个小正方体组成的?(有8个小正方体)

师:能说一说你是怎么看的吗?

2、师:看来仅有观察还是不够的,还要在观察基础上加入合理的推想,把你视线所及看不到的在脑海中想到,才会得出正确结论。这节课,我们就继续用观察和推想这两种方法来探索《露在外面的面》(板书课题)

二、操作体验,探索新知

1、师(请看大屏幕):一个小正方体放在墙角,有几个面露在外面?哪几个?

2、师:继续看大屏幕,这有几个小正方体?

(学生可能回答:有4个小正方体)

师:它有几个面露在外面?你怎么想的?

(学生可能回答:露在外面的有9个面。 上面的小正方体有3个面露在外面,前边的小正方体也露出3个面,右边的小正方体也一样,3+3+3=9,所以一共有9个面)

师追问:不是有四个小正方体吗?你怎么只数了三个?

(学生可能回答:有一个小正方体的面全被挡住了,一个也没露出来,就不用看了)

师生一起按照上面、左面和右面的顺序数露在外面的面。

师:他是这么数的,谁和他的想法不一样?

(学生可能回答:我先看正面,一共有三个小正方形;再看上面,也有三个小正方形;再看右面,也有三个小正方形。3+3+3=9,所以一共有9个面露在外面)

师:谁听清了,他是怎么数的?

(生重复方法)

师生共同按这一方法数。

可是我有一个疑问:为什么不看左面,也不看下面、后面?

(学生可能回答:因为那三个面都被挡住了。)

师:现在我们来比较一下这两种方法,它们有什么不同?

(第一种方法是按小正方体的个数一个一个数的;第二种方法是从不同方向看的,先看上面,再看前面、右面)

师(边演示边总结):第一种是逐一观察每一个小正方体,把他们露出来的面的数量分别数出来,然后再相加;第二种是分别从露出来的三个方向看,正面、上面、侧面,从不同方向数出露在外面的面的个数,然后相加。不论用哪种方法,只要按一定的顺序去观察,就不会重复,也不会遗漏了。

3、学生操作

师:这四个小正方体一起放在墙角,除了我们看到的这种摆法外,还可以怎么摆?想一想,与同伴交流。

师(结合板书)小结:都是用4个小正方体来摆,但由于摆的方式不同,露在外面的面数也不同;即使露在外面的面数相同了,摆法还是不同。

三、合作探索,发现规律

师:刚才我们用4个小正方体随意摆在一起,露在外面的面数有所不同。现在我们用几个小正方体,按一定的方式有规律地摆,露在外面的面数会怎样变化呢?

1、出示合作提示

①小组同学商量、选择一种方式,之后按照这种方式有规律地摆(如横着摆、竖着摆……)。

②先由一个小正方体摆起,记下露在外面的面数;再逐个增加小正方体,并依次记录露在外面的小正方形的面数。

③边记录数据边观察,并把你们的发现写下来。

师:你看懂提示了吗?有几个要求?

什么是有规律地摆?

2、小组合作探索,并填写记录单

小正方体的个数 1 2 3 4 5 6 ……

露在外面的面数

我发现的规律

3、全班交流

师:哪个小组愿意到前面来边说边演示,介绍一下你们小组是怎么做的,并说说你们的发现。(预设学生可能出现的几种情况,在教学中根据实际情况相机处理。)

预设:

(展示学生记录单)

小正方体的个数 1 2 3 4 5 6 … …

露在外面的面数 3 5 7 9 11 13 ……

我发现的规律 :每增加一个小正方体,就增加2个面

师:每次增加的都是这样2个面吗?你指指看。

师指着上面的面问:这个面不也在变吗?为什么它不算成是增加的面?

(学生可能回答:它虽然有变化,但是这个面没增加,原来的上面被盖住了,又露出一个上面,所以上面没变)

师:原来上面的这个面始终起到了替代的作用,它的个数始终没变,那么我们在数增加的面数时就不用考虑这个替代面了。

师(面向全班):现在,让我们一起看这个表格,如果按这种方式继续摆下去,摆8个小正方体,露在外面的面一共有多少个?10个小正方体呢?20个呢?你发现了什么?(也可以提示学生观察小正方体的个数与露出的面数的关系)

四、练习巩固

1、基础

2、变式

3、拓展

五、小结

今天你的收获是什么?

篇7:北师大版八年级下册数学教案

北师大初二数学下册教案:统计调查

教材分析:1、地位与作用

2、教学目标

知识目标:让学生经历数据的收集、整理、描述、分析的模拟历程,从中了解抽样调查、总体、个体、样本、样本容量等统计概念;全面调查与抽样调查的特点;用简单随机抽样的数据去估计总体的方法。

能力目标:初步感受抽样调查的必要性和可行性。初步体会用样本估计总体的思想。体会有代表性的样本对正确估计总体的重要性。

情感目标:鼓励学生自主探索、合作交流,意识到合作的重要性。

为达到以上教学目标,结合学生实际情况,确定本节课教学重难点。

3、教学重难点

重点:理解抽样调查、总体、个体、样本、样本容量等统计概念,体会用样本估计总体的思想。

难点:全面调查与抽样调查的特点;选取有代表性的样本对正确估计总体的重要性。我通过举具体的生活实例来说明讲解来突出重点突破难点。

学情分析:

学生以往的学习内容中,多是以确定性为主的知识,虽在前一阶段学习了统计图表,全面调查收集数据,并对统计有了初步认识,但抽样调查的不确定性会导致学生出现对统计结果的怀疑和对统计的科学性的质疑。在抽取样本时,由于学生生活阅历上的限制,对于如何使得样本具有较好的代表性容易束手无策,对于抽取样本时随机抽取与样本的代表性难于理解。对于抽样调查和全面调查的特征学生在观察和归纳方面说的不准确,所以在教学中教师应做好示范,适当提示,让学生根据实际情况采取恰当的调查方法。

教法分析:

学法指导:以学生讨论为主,将观察、思考、讨论贯穿于整个教学环节之中,让学生自主探索、合作交流,意识到合作的重要性,力求体现课堂教学的主体性、合作性、互补性。

教法分析:教师有组织、有目的、有针对性地引导学生并参与到学习活动中,鼓励学生采用自主学习、合作交流的学习方式,培养学生善于观察、发现、比较、归纳的习惯和能力,使学生真正成为学习的主人。

教学过程:

(一)创设情境,导入新课

一天,爸爸叫儿子去买一盒火柴。临出门前,爸爸嘱咐儿子要买能划燃的火柴。儿子拿着钱出门了,过了好一会儿,儿子才回到家。

“火柴能划燃吗?”爸爸问。

“都能划燃。”

“你这么肯定?”

儿子递过一盒划过的火柴,兴奋地说:“我每根都试过啦。”

说一说:在这则笑话中,儿子采用的是什么调查方式?(全面调查)这种调查方式好不好?你能帮他想出好方法来调查吗?(抽两根试试)

生活实例:如何知道一锅汤的味道呢?(舀一勺试试)生活中还有类似的例子吗?(学生小组交流,代表回答,打一三角口确定西瓜甜不甜等)想知道一批导弹的杀伤半径采用什么调查方式?为什么?

师:以上示例都不适合用全面调查,这节课我们来学习统计调查中的另一种调查方式——抽样调查(板书课题:抽样调查)

意图:通过实例,让学生感悟抽样调查的必要性和意义,激发学生学习兴趣。

(二)交流互动,探索新知

学生自主学习抽样调查的有关概念,师适时举例说明概念。

总体:要考察的全体对象称为总体,如一盒火柴的划燃情况。

个体:组成总体的每一个考察对象称为个体,如每一根火柴的划燃情况。

样本:被抽取的那些个体组成一个样本。如抽取的两根火柴的划燃情况。

样本容量:样本中个体的数目称为样本容量。如上例中的样本容量为2,样本容量没有单位。

注意:考察对象不一定指人,为了强调调查目的,考察对象可以使调查内容。

适时小结:通过对总体、个体、样本、样本容量的认识,抽样调查实际是: 。统计中常用样本特性估计总体特性,这是统计基本思想。

师:以上概念不需要死记硬背,但需要理解。你们理解了吗?通过一个示例来考考大家。

例题讲解:在一次考试中,考生有2万名。怎样才能既省时又省力的了解到这些考生的数学平均成绩呢?我们可以抽取其中的500名进行调查。总体 ;个体 ;样本 ;样本容量 。(学生自主思考后举手回答,师适时评价并板书答案)

练习: 1.说明在以下问题中,总体、个体、样本、样本的容量各指什么。

(1)为了考察我校的学生参加课外体育活动的情况,调查了其中20名学生每天参加课外体育活动的时间。(2)为了了解一批灯泡的寿命,从中抽取10只进行试验.(3)为了考察某公园一年中每天进园的人数,在其中的30天里对进园的人数进行了统计。

师:趁热打铁,比比谁又快又准?(生通过前面例题的讲解后能正确解答,出现问题也不会太大,提示后可以纠正)

师:截止目前,我们一共学习了两种调查方式-全面调查和抽样调查。那么根据实际情况,如何选择调查方式呢?我们通过接下来这道题来探讨。

2.要调查下面几个问题,你认为应该作全面调查还是抽样调查:

(1)调查我们班所有同学的体重情况;(2)调查市场上五色冰淇淋的色素含量是否符合国家标准;(3)检测某城市的空气质量;(4)调查某村所有家庭的年收入;(5)调查红安县初一年级的作业量情况;(6)调查黄冈市水稻亩产量.(生思考回答,有异议的可以先小组讨论,出结果后师评价。)

师:通过以上例题,我们对全面调查和抽样调查作比较。比比哪个小组更准确?(给出表格,小组合作交流完成表格,师评价小组结果后给出示范答案)

意图:通过师生、生生间的交流互动,理解掌握本节概念学习。

(三)示例探究

某校有名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,你打算怎样进行调查?

思考:1、确定调查方式;2、抽取多少名学生进行调查比较合适?(学生合作交流,得出较合适的答案并说明理由)被调查的学生又如何抽取呢?说说你的抽取方案。

师:为了使样本更好地反映总体情况,除了有合适的样本容量,还要使每个个体都有相等的机会被抽到,即抽取样本要有代表性,如何选取?(例:从学号中随意抽取100个学号再调查)还有其他方法吗?(小组讨论)

归纳:上面抽取样本的过程中,总体中每一个个体都有相等的机会被抽到,像这样的抽样方法叫简单随机抽样.

(整理、描述数据)看图思考:全校的2000名学生,最喜欢哪类节目?全校2000名学生,对体育的最爱约占几人?

意图:通过教材示例,体会有代表性的样本对正确估计总体的重要性,学习简单随机抽样的抽样方法。

(四)学以致用

(学生合作交流,教师激励评价)

1、为了了解一批电视机的使用寿命,从中抽取了10台进行试验,对于这个问题,下列说法中正确的是( )

(A) 每台电视机的使用寿命是个体 (B) 一批电视机是总体

(C) 10台电视机是总体的一个样本(D) 10台是样本容量

2、为了解全校学生的平均身高,小明调查了座位在自己身边的3名同学,把他们身高的平均值作为全校学生平均身高的估计.

⑴小明的调查是抽样调查吗?

⑵如果是抽样调查,指出调查的总体、个体、样本和样本容量。

⑶这个调查结果能较好地反映总体的情况吗?如果不能,请说明理由。

3、某班要选3名同学代表本班参加班级间的交流活动, 现在按下面的办法抽取,把全班同学的姓名分别写在没有明显差别的小纸片上,把纸片混放在一个盒子里,充分搅拌后,随意抽取3张,按照纸片上所写的名字选取3名同学,你觉得上面的抽取过程是简单随机抽样吗?为什么?

意图:课堂小测,巩固技能。

(五)整理归纳

(学生梳理知识,教师适当补充)抽样调查的有关概念、优点、思想方法。

(六)知识拓展

(能力提高,解决实际问题)估计池塘有多少条鱼?

(七)作业布置

必做题:习题10.1第3、6题;选做题:要了解全校一周内学生用于数学学习时间,小组合作制作一份调查问卷并做抽样调查。

作业设计说明:必做题巩固本节课的内容,选做题既培养学生合作能力也让学生学会将所学知识联系实际。

教学反思:在学习全面调查后,以原有问题为基础,通过某些调查不适宜用于全面调查,从而引出本节课的调查方式,前后呼应过渡自然,使学生感受数学知识的连贯性,激发学生自主探索意识。本节课还是应以自主探索和合作交流为主,体现学生的主体地位,教师适当说明讲解,关注学生的交流合作和对新知识理解情况,让学生在交流学习中发现数学的乐趣,在探究过程中提高数学应用意识。

北师大初二数学下册教案:直方图

第一课时:直方图(1)

学习目标:了解频数分布表的制作步骤。

重点、难点:频数分布表的制作。

学习过程:

问题一:下面数据是截止费尔兹奖得主获奖时的年龄:

29 39 35 33 39 28 33 35 31 31 37 32

38 36 31 39 32 38 37 34 29 34 38 32

35 36 33 29 32 35 36 37 39 38 40 38

37 39 38 34 33 40 36 36 37 40 31 38

请根据下面的不同分组方法,你觉得比较哪一种分组能更好地说明费尔兹奖得主获奖的年龄分布,并列出频数分布表,画出频数分布直方图.

解:1. 计算极差(最大值与最小值的差):

2. 决定组距与组数:

3. 列频数分布表:

年龄分组 划记 频数

合计

4.画出频数分布直方图

课堂练习:

1、光明中学为了解本校学生的身体发育情况,对八年级同龄的 名女生的身高进行了测量,结果如下(数据均为整数,单位: ):

将数据适当分组,绘制频数分布直方图。

2、体育委员统计了全班同学60秒跳绳的次数,并列出下列频数分布表:

(1)全班有 名同学;

(2)组距是 ,组数是 ;

(3)跳绳次数 在 范围的同学有 人,占全班同学 %;(精确到0.01%)

(4)画出适当的统计图表示上面的信息;

(5)你怎样评价这个班的跳绳成绩?

3、为了进一步了解七年级学生的身体素质情况,体育老师对七年级(1)班50名学生进行1分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下图所示.

组 别 次数x 频数(人数)

第1组 80100 6

第2组 100120 8

第3组 10 a

第4组 140

第5组 160

请结合图表完成下列问题.

(1)表中的a=______.

(2)请把频数直方图补充完整.

(3)若八年级学生1min跳绳次数(x)达标要求是:x120为不合格,120140为合格,140160为良,x160为优,根据以上信息,请你给学校或七年级同学提一条合理化建议.

第二课时:直方图(二)

学习目标:能正确画出频数分布直方图和画频数折线图

重点、难点:能正确地画出频数分布直方图。

学习过程:

解:(1)计算极差: (4)画频数分布直方图和频数折线图:

(2)决定组数和组距:

(3)列频数分布表:

平行线及平行公理

教学建议

1、教材分析

(1)知识结构

本节从实例中概括出平行线的概念,给出了平行线的记法和它的画法,并引出了平行公理及其推论.

(2)重点、难点分析

本节的重点是:平行公理及其推论.承认经过直线外一点有且只有一条直线与这条直线平行的几何是欧氏几何,否则是非欧几何.由此可见,平行公理在几何中的地位十分重要.在教学时,学生可以从用直尺和三角板画平行线的画图过程中,理解平行公理.特别是真正地体会到公理中的有且只有的意义.

本节难点是:理解平行线的概念以及由平行公理导出其推论的过程定义中的在同一平面内的这个前提,是为了区别立体几何中异面直线的情况.教学时只要学生能意识到,空间的直线还存在另一种不相交的情形的,即异面直线.

另外,从平行公理推导出其推论的过程,渗透了反证法的思想.初中学生难于理解,教材对反证法既不作要求,也不必提出反证法这个词,只要把道理说明白即可.

2、教法建议

(1)概念的引入:学生从教师创设的情景中,可以直观地认识平行线.从实例中,体会平行线在现实中是存在的,并且有它固有的属性,因此很有必要认真地研究它.当然,我们首先要能深刻地理解它的定义.

(2)分析概念:教师可以举一组图形,帮助学生理解定义中强调的在同一平面内这个前提条件.初步形成

(3)掌握平行线的画法:学生刚开始接触几何,为降低难度,适应学生的发展,提高学生的学习兴趣,作图时不要求学生写出已知,求做,证明等步骤,只要保留作图痕迹.通过作图的教学使学生能准确而迅速地画出几何图形,为今后的几何学习打下良好的基础.

(4)平行公理及其推论

在学生画图的过程中,教师可以提出问题,过直线外一点有几条直线可以与已知直线平行呢?学生在动手操作后,可以体验到公理的客观存在性.并且可以让有数学素养的同学,尝试说明平行公理推论的正确性,通过说理,体会数学的严谨性与逻辑性.

教学设计示例

一、教学目标

1.了解平行线的概念,理解学过的描述图形形状和位置关系的语句.

2.掌握平行公理及推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线;会用学过的几何语句描述简单的图形和根据语句画图.

3.通过画平行线和按几何语句画图的题目练习,培养学生画图能力.

4.通过平行公理推论的推理,培养学生的逻辑思维能力和进行推理的能力.

二、学法引导

1.教师教法:尝试法、引导法、发现法.

2.学生学法:在教师的引导下,尝试发现新知,造就成就感.

三、重点、难点及解决办法

(-)重点

平行公理及推论.

(二)难点

平行线概念的理解.

(三)解决办法

通过引导学生尝试发现新知、练习巩固的方法来解决.

四、教具学具准备

投影仪、三角板、自制胶片.

五、师生互动活动设计

1.通过投影片和适当问题创设情境,引入新课.

2.通过教师引导,学生积极思维,进行反馈练习,完成新授.

3.学生自己完成本课小结.

六、教学步骤

(-)明确目标

掌握平行公理及其推论的应用,能画出平行线,会用几何语句描述图形的画法,培养学生的逻辑推理能力.

(二)整体感知

以情境引出课题,以生活知识和已有的知识为基础,引导学生学习了平行公理及其推论,并以变式训练强化和巩固新知.

(三)教学过程

创设情境,引出课题

师:前面我们学习了两条直线相交的情形,下面清同学们看投影片.观察投影片中的铁路桥梁以及立在路边的三根电线杆,再请同学们观察黑板相对的两条边和横格本中两条横线,若把它们向两方延长,看成直线,它们还是相交直线吗?

篇8:北师大小学四年级下册数学教案

教学目标:

1、通过拼、摆画等活动,让学生进一步感受三角形的特征及三角形与四边形的联系与区别。

2、感受数学的转化思想。

3、培养学生的动手操作能力。

重点难点:

感受三角形与其他图形的关系。

教具学具:

锐角三角形、直角三角形、钝角三角形。

教学过程:

一、导入,出示预习提纲

1、小组同学合作,用三角形拼四边形

2、三角形按角可以分哪几类?

3、三角形按边可以分哪几类?

4、每个三角形至少有几个锐角?

二、展示汇报交流

让学生明确

1、不是任意两个三角形就能拼成四边形

2、两个完全一样的三角形能拼成四边形

3、两个相同的直角三角形能拼成长方形

4、两个相同的锐角或钝角三角形能拼成平行四边形

5、用三个相同的三角形拼成了梯形

三、反馈检测

用三角形拼出美丽的图案.

请各小组上讲台展示自己的美丽图案

篇9:北师大版九年级下册数学教案

学习目标

1.通过实验、操作、思考活动认识位似形.

2.会利用位似形原理将一个图形放大或缩小.

4.懂得数学在现实生活中的作用,增强学好数学的信心.

重点:理解位似是由位似中心和相似比决定的.

难点:作位似图形以及求位似图形的相似比.

一预习展示:

1.课本110页数学实验室.

2..课本110页实践与思考.

二探究学习:

1.如图,已知四边形ABCD,用尺规将它放大,使放大前后的图形对应线段的比为1∶2.

2.如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).

(1)以O为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;

(2)分别写出B、C两点的对应点B‘、C‘的坐标;

(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M’的坐标.

3、在AB=30m,AD=20m的矩形ABCD的花坛四周修筑小路.

(1)如果四周的小路的宽均相等,如图(1),那么小路四周所围成的矩形A′B′C′D′和矩形ABCD相似吗?请说明理由.

(2)如果相对着的两条小路的宽均相等,如图(2),试问小路的宽x与y的比值为多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD位似?请说明理由.

三课堂作业:

1.用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可选在 A.原图形的外部 B.原图形的内部 C.原图形的边上 D.任意位置

2.两个图形是位似图形,则它们一定相似,反过来,两个图形相似,则它们

A.一定位似 B. 一定不位似 C.不一定位似 D.对应点的连线交于一点

3.如图,矩形OABC的顶点坐标分别为O(0,0),A(6,0),B(6,4),C(0,4),画出以点O为位似中心,矩形OABC的位似图形OA’B‘C’,使它面积等于矩形OABC面积的 ,并分别写出A’、B‘、C’三点的坐标.

4.印刷一张矩形的广告牌,如图,它的印刷面积是32dm2,上下空白各1dm,两边空白各0.5dm,设印刷部分从上到下的长为xdm。四周空白处的面积为Sdm2.

(1)求S与x的关系式;

(2)当要求四周空白处的面积为18dm2时,求印刷这张广告牌的纸张的长和宽各是多少?

(3)在(2)的条件下,内外两个矩形是位似形吗?说明理由.

篇10:北师大版九年级下册数学教案

教学目标

1、通过具体实例认识图形的旋转变换;培养动手能力和合情推理能力以及数学说理的习惯和能力。

2、通过各种图形的旋转,体验感受图形旋转的主要因素是旋转中心和旋转角度。

教学过程

一、创设情境

在日常生活中,除了物体的平行移动外,我们还可以看到许多物体的旋转的现象:宇宙中的星球运动 ,微观世界里的粒子运动 ,生活中的运动。

在下图中图形都可以看成是由一个或几个基本平面图形转动而产生的奇妙画面。

这些图形有什么特征?

这些图形都可以看成是一个图形绕着某一点旋转而形成的新图形。

如图,单摆上小球的转动,由位置P转到位置P′,像这样的运动就叫做旋转,这悬挂点就叫做小球旋转的旋转中心

旋转的概念:

注意:图形旋转时,每个点都按相同的方式旋转相同的角度 ,但每个点所经过的路线不同。

练习:1、下列现象中属于旋转的有( )个

①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动。A.2 B.3 C.4 D.5

2、香港特别行政区区旗中央的紫荆花图案由5个相同的花瓣组成,它是由其中一瓣经过几次旋转得到的?

二、探究归纳

如图(1),点A绕着点O转过80°到了点A′的位置,那么点A′与点A称为对应点,点O就是旋转中心,而∠AOA′的度数等于旋转角度80°。

如图(2),线段AB绕着点O转过60°到了线段A′B′的位置,那么线段A′B′和线段AB称为对应线段,而点B′和点 是对应点。

如图(3),△AOB绕着点O旋转45°到了△A′OB′的位置,那么图中旋转中心是点 ,旋转的角度是 ,对应点是 ,对应线段是 ,∠A与∠A′称为对应角,图中对应角还有 。

归纳 旋转中心在旋转过程中 ,图形的旋转是由 、和 决定的。

三、操作探索活动

1、将△ABC绕点O按顺时针方向旋转到△A ′ B′ C ′的位置,度量∠AOA′ 、∠BOB′ 、∠COC′的度数, 线段AO与AO′,BO与BO′,CO与CO′的长度。

你发现了什么?△ABC与△A ′ B′ C ′是全等三角形吗?

思考:图形的旋转和图形的中心对称有什么关系?

四、实践应用

例1已知A点与点O,画出点A绕着点O旋转30°后的点A′

1、已知线段AB与点O,画出线段AB绕着点O按逆时针方向旋转80°后的图形。

2、已知△ ABC和点O,画出△ ABC绕着点O按逆时针方向旋转80°后的图形。

3、若改成多边形呢?你能总结出旋转作图的方法吗?

完成课本P58“例1、例2”

例2思考课本P60“交流与发现”,并完成“例4”

练习:如图,△ABC是等边三角形,D是BC边上一点,△ABD经过旋转后到达△ACE的位置。

(1)旋转中心是哪个点?(2)旋转了多少度?

(3)如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置?

五、巩固提高

1、课本P74练习第1,2,3题

2、如图,△ABD按顺时针方向旋转成△ACE,写出图中的对应顶点、对应角、对应线段以及旋转中心和旋转角度,并试着写出图中相等的线段,相等的角(指两个三角形中的边和角).

3、长方形ABCD中,连结BD,将△ABD旋转到△CDB处,写出旋转中心和旋转角度。

六、课堂小结

由师生共同归纳出图形旋转的有关要点:

(1)图形的旋转是将一个图形绕着一点顺(逆)时针转过某个角度;

(2)旋转中心在旋转过程中保持不动;

(3)图形的旋转是由旋转中心和旋转的角度决定的。

七、作业布置

课本P78习题15.2第1,4题。

篇11:北师大版九年级下册数学教案

教学过程:

一、复习旧知:

1、角平分线及中垂线的定义(用集合的观点解释)

2、在一张透明纸上画半径分别1cm,2cm,3.5cm的圆,同桌的两个同学将所画的圆的大小分别进行比较(分别对应重合)。并回答:这些圆为什么能够分别重合?并体会圆是怎样形成的?

二、讲授新课:

1、让学生拿出准备好的木条照课本演示圆的形成,用圆规再次演示圆的形成。

分析归纳圆定义:

在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点随之旋转所形成的图形叫做圆,其中固定的端点叫做圆心,线段叫做半径。

注意:“在平面内”不能忽略,以点O为圆心的圆,记作:“⊙O”,读作:圆O

2、进一步观察,体会圆的形成,结合园的定义,分析得出:

① 圆上各点到定点(圆心)的距离等于定长(半径)

② 到定点的距离等于定长的点都在以定点为圆心,

定长为半径的圆上。由此得出圆的定义:

圆是到定点的距离等于定长的点的集合。

例如,到平面上一点O距离为1.5cm的点的集合是以O为圆心,半径为1.5cm的一个圆。

3、在画圆的过程中,还体会到圆内各点到圆心的距离都小于半径,到圆心的距离小于半径的点都在圆内。

圆的内部是到圆心的距离小于半径的点的集合。同样有:圆的外部是到圆心的距离大于半径的点的集合。

4、初步掌握圆与一个集合之间的关系:

⑴已知图形,找点的集合

例如,如图,以O为圆心,半径为2cm的圆,

则是以点O为圆心,2cm长为半径的点的集合;

以O为圆心,半径为2cm的圆的内部是到

圆心O的距离小于2cm的所有点的集合;

以O为圆心,半径为2cm的圆的外部是到

圆心O的距离大于2cm的点的集合。

⑵已知点的集合,找图形

例如,和已知点O的距离为3cm的点的集合是以点O为圆心,3cm长为半径的圆。

5、点与圆的位置关系:

点在圆上,点在圆内,点在圆外。

点与圆的位置关系与点到圆心的距离的数量关系如下:

设圆心为O,半径为r,点P到点O的距离为d,则有

点P在圆内 OP>r

点P在圆上 OP=r

点P在圆外 OP

例1:求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上。

〈分析〉证明多点共圆,由圆的定义知道,即要证明点A、B、C、D到点O等距离。

三、巩固练习:

1、已知△ABC中,∠C = 90 ,AC = 2cm,BC = 4cm,CM为中线,以C为圆心, cm长为半径画圆,则A、B、C、M四点中在圆外的有

在圆上的有 ,在圆的内部有 。

2、课本P

3、我们学过的所有顶点共圆的图形还有那些?

33.5 O

四、课后小结:

1、圆的两种定义

2、圆的内部,圆的外部的定义

3、点与圆的位置关系

4、点与圆的位置关系和点到圆心的距离的数量关系

5、多点共圆的证法

五、布置作业:

课本P 1、(1,2)、2、3、4

教学设计说明

本节课主要是通过圆的概念的探讨,深入地了解圆的形成,从而使学生脱离在小学时的对圆的肤浅认识,掌握圆在初中的知识里更完整的定义。

在教学重点上关键让学生了解圆的两点,简单的说,到圆心距离等于半径的点在圆上,圆上的点到圆心的距离等于半径,在圆的概念的引入时,首先利用集合的语言去解释圆,例如像前面学过的角平分线及中垂线的集合定义,然后利用图形的画法理解圆的定义,这样设计的目的是为了培养学生数形结合的思想。

在教学的讲授中,先让学生自己动手去演示圆的形成,要了解画一个圆的两个必需条件:定点和定长;让学生自己去体会圆的概念,同时,还会体会到圆的内部和外部的意义,并能等同的用集合的定义解释内部和外部,从而又能引出一个点和圆的位置关系,那么,学生会在一系列的过程中更清楚的认识圆的定义,更完整的了解圆。例题的设计是为了使学生掌握多点共圆必须要以定义为依据,并能探索其他的所有顶点共圆的图形。

总之,本节课主要是以教师的引导和讲授为主,通过学生的自我演示去了解圆的形成,培养学生总结归纳的能力,提高探索解决问题的能力,设计上总的框架先探索研究后理解应用.

篇12:2022北师大五年级下册数学教案

教学内容:

教材20-21页“露在外面的面”

教学目标:

1.通过操作、观察、分析等活动,综合运用有关知识,解决有关物体表面积的问题,发展学生的空间观念(重、难点);

2.经历探究过程,激发主动探索欲望;

3.培养学生与人合作、交往的能力。

教学重难点:

能够准确的计算出多个长方体和正方体堆放时露在外面的表面积。

教学过程:

一、创设情境激趣揭题

1.谈话引入,出示放在墙角的包装纸箱图,让学生观察露在外面的面有几个?

2.顺势导入新课:露在外面的面;

二、扶放结合探究新知

1.将一个正方体放在墙角,引导学生观察有几个面露在外面?

2.将四个正方体堆放在墙角,引导学生观察:有几个面露在外面?

3.变换方法堆放正方体,引导学生观察露在外面的面的变化;

4.将正方体1个、2个、3个…排成一层,引导学生观察露在外面的面的规律:3N+2

5.引导学生探究竖放一排的规律:4N+1

6.引导学生探究多排多层规律:5N+4

三、反馈矫正落实双基

1.出示教材练习二第4题

2.用正方体模型摆出不同的情况,引导学生找出露在外面的面有什么规律?

四、小结评价布置预习

1.引导学生进行课堂小结

2.布置课外预习:教材24页“到数”

板书设计:

露在外面的面

1.正方体堆放在墙角处,观察露在外面的面的方法:(1)看露在外面的面有几个;(2)分别从正面、侧面、上面观察,每个方位露在外面的面有几个;

2.平放一排规律:露在外面的面=正方体的个数×3+2即露在外面的面=3n+2;

3.竖放一排的规律:露在外面的面=正方体的个数×4+1即露在外面的面=4n+1;

4.多排多层放的规律:露在外面的面=正方体的竖排数×5+4即露在外面的面=5n+4

教学反思:

1.注重让学生经历探索规律的过程,采用互动探究式教学,立足于“导”,积累探索图形表面积的经验;

2.注重培养学生有序的观察,发展学生的空间观念。

3.注重创设富有生活气息的情境,有利于激发学生的探究兴趣。

2022北师大五年级下册数学教案4

教学目标:

1.通过动手操作,知道长方体、正方体的展开图,加深对长方体、正方体的认识。

2.在想象、操作等活动中,发展空间观念,激发学习数学的兴趣。

教学重点:

通过动手操作,知道长方体、正方体的展开图,加深对长方体、正方体的认识。

教学难点:

通过动手操作,知道长方体、正方体的展开图,加深对长方体、正方体的认识。

教学准备:

1.准备长方体和正方体的纸盒各一个。

2.把附页1中的图形剪下来。

3.前置性作业

(1) 把一个正方体盒子沿着棱剪开,得到一个展开图是(可以画一画也可以贴一贴)

(2)把一个正方体盒子沿着棱剪开,得到一个展开图是(可以画一画也可以贴一贴)

4. 做一做

(1)下面哪些图形沿虚线折叠后刚好能围成正方体?

(2)下面哪些图形沿虚线折叠后刚好能围成长方体?

教学过程:

课前3分钟内容

一、动手操作,知道长方体、正方体的展开图。

1.通过剪盒子,认识长方体、正方体的展开图。

师:请同学们拿出你们带来的正方体纸盒,沿着棱剪开,看看你能得到什么样的展开图。

学生在剪、拆盒子的过程中,教师要对剪的方法进行适当的指导。

由于剪法不同,展开图的形状也是不同的。学生剪好后,教师展示不同形状的展开图。

师:请同学们再将一个长方体盒子沿棱剪开,看看又能得到怎样的展开图。

2.体会展开图与长方体、正方体的联系。

教科书第16页“做一做”第1、2题

引导学生理解题目要求,利用附页1中的图形进行操作,独立地想一想哪些图形符合题目的要求,再组织学生交流。

二、练一练

1.教科书第17页“练一练”第1题。

先让学生看展开图进行思考,并把结果写下来,然后再利用附页中的图试一试。

2.教科书第17页“练一练”第2题。

先让学生按展开图说说哪两个面是相对的面,再联系长方体说说展开图中的各个长方形对应的是长方体中的哪个面。

设板书计:

展开与折叠

【北师大五下册数学教案】相关文章:

1.北师大五年级下册数学教案

2.北师大版五年级下册数学教案

3.北师大版二年级下册数学教案

4.北师大版四年级下册数学教案

5.北师大版小学五年级下册数学教案

6.初三北师大版数学教案

7.北师大六年级下数学教案

8.北师大三年级数学教案上册

9.北师大三年级下数学教案

10.北师大三年级上数学教案

下载word文档
《北师大五下册数学教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部