上学期六年级数学教案(1)复习分数乘法的意义和计算方法 (人教新课标六年级上册)
“KimYuna”通过精心收集,向本站投稿了13篇上学期六年级数学教案(1)复习分数乘法的意义和计算方法 (人教新课标六年级上册),下面是小编给大家整理后的上学期六年级数学教案(1)复习分数乘法的意义和计算方法 (人教新课标六年级上册),欢迎大家借鉴与参考,希望对大家有所帮助。
篇1:-上学期六年级数学教案(1)复习分数乘法的意义和计算方法 (人教新课标六年级上册)
主备人:孙菲
4、整理和复习
教学内容:
教科书第26页第1、2题,练习七的第1、4题。
教学目的:
1、复习分数乘法的意义和计算法则,乘法运算定律在分数中的推广和分数乘法的简便计算。
2、进-步提高学生计算分数乘法的熟练程度和灵活计算的能力。
3、进一步培养学生认真书写及良好的审题习惯。
重点、难点:
分数乘法的意义,法则的应用。
教学过程:
一、复习分数乘法的意义。
1、口算。
(1)、听算
(2)、说出意义并分类
×2 × × 3× ×
× × 0× ×2 ×
分类:分数×整数:
一个数×分数:
(3)、听题列式
3个 的3倍 的 8的
17个 312 的 的213 倍 4.75的
小结:1、求几个几是多少
2、一个数的几倍是多少 都用乘法。
3、一个数的几分之几是多少
二、复习分数乘法的计算法则www.xkb1.com
1、分数乘法的计算法则是怎样的。
2、注意先约分后计算。
3、在第1题的前两道题只中,都有一个因数是整数,约分的时候要注意什么?(整数与分数的分母约分。)
三、复习乘法运算定律和简便计算
教师:“谁能说一说我们学过用哪些乘法运算定律,它们在分数乘法中适用吗?”指名学生回答。
×334 ×7 245 × ×3
( + )×15 × + ×
请全班学生在练习本上做教科书第27页练习七第4题。教师巡视检查。同时,请三名学生把这三道题做在黑板上,做完后集体订正,让这三名学生说一说自己在计算中用到了什么运算定律。
三、作业新课标第一网
练习七的第1、4题。
一、 课堂小结
通过复习,我们对分数乘法的意义和计算法则有了进一步的认识,能应用乘法运算定律熟练地计算分数乘法及简便运算
篇2:分数乘法 备课资料(人教新课标六年级上册)
第二单元 分数乘法
单元目标:
1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。
2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。
3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。
4、 使学生理解倒数的意义,掌握求倒数的方法。
单元重点:
分数乘法的意义和计算法则。
单元难点:
1、 理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。
2、 分数乘法计算法则的推导。
1、分数乘法
(1)分数乘整数
教学目标:
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则。
教学过程:
一、 复习
1.出示复习题。
(1)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少? 9个11是多少? 8个6是多少?
(2)计算:
+ + = + + =
2.引出课题。
+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、 新授
1、 利用 + + 教学分数乘法。
(1) 这道加法算式中,加数各是多少?(都是 )
(2) 表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法, ×3)
(3) + + =9,那么 + + = ×3,所以 ×3=____________=9。同学们想想看, ×3=9计算过程是怎样的?谁能把它补充完整。
2、 出示例1,画出线段图,学生独立列式解答。
(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?(列式: ×3 = )
3、 结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。
4、 练习:练习完成“做一做”第2题。
5、 教学例2
(1)出示 ×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。三、练习
1、 完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)
2、 “做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)
三、 作业
练习二第1、2、4题。
(2)一个数乘分数
教学目标:
1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。
2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:推导算理,总结法则。
教学过程:
一、导入
1、计算下列各题并说出计算方法。
× × ×
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。
二、新课
1、教学例3
(1)出示条件和问题:每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式: ×
(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的 ,第二步再涂出 小时粉刷这面墙的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”
(3)根据直观的操作结果,得出 × = ,根据刚才操作的过程和结果推导出计算方法: × = = 。
(4)提出问题: 小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。
2、相关练习:练习二第5题。
3、小结一个数乘分数的意义和计算方法。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。
4、教学例4
(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式: × 。
(2)先让学生独立计算,再交流计算的方法,明确分数乘分数也可以先约分再乘。通过展示学生的计算过程,进一步明确约分的书写格式: (km)
(3)学生独立解答“5分钟飞行多少千米?”,讲评中介绍分数乘整数的另一种格式。
5、巩固练习:P11“做一做”(注意提醒学生要先观察能否约分,再着手计算)。
三、练习
1、练习三第6题
(1)求2枝长多少分米,就是求2个 是多少?算式: ×2
(2)求 枝或 枝长多少分米,就是求 的 是多少,或 的 是多少。
2、练习三第9题。(学生讨论交流,说说错在哪里,结合学生易犯的错误讲解)
四、作业
练习二第3、7、8、10题。
教学追记:
分数乘整数、分数乘整数这两堂课,我都注重从生活引入,并通过直观的线段图、折纸等方式让学生理解算理。课中,我能改变以例题、示范、讲解为主的教学方式,改变以记忆法则、机械训练为主的学习方式,引导学生投入到探索与交流的学习活动之中,让学生变被动为主动,参与到算理的探讨、运算规律的归纳中来。
(3)分数混合运算和简便运算
教学目标:
1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。
教学重点:
理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。
教学过程:
一、复习
1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)
2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)
3、观察下面各题,先说说运算顺序,再进行计算。
(1)36×2+15 (2)5×6+7×3 (3)15×(34-27)
二、新授
1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。
(1) + × (2) × - (3) - × (4) × +
2、复习整数乘法的运算定律
(1)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
(2)这些运算定律有什么用处?你能举例说明吗?
(3)用简便方法计算:25×7×4 0.36×101
3、推导运算定律是否适用于分数。
(1)鼓励学生大胆猜测并勇于发表自己的个人意见。
(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)
(3)各四人小组汇报讨论和计算结果。
4、教学例6
(1)出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)
(2)出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)
(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。
三、练习
P14“做一做”:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。
(4)练习课
教学目标:
1、使学生掌握分数乘加、乘减混合运算的顺序,能正确地进行计算。
2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。
教学重点:熟练掌握运算定律,灵活、准确、合理地进行简便计算。
教学难点:熟练掌握运算定律,准确、合理地进行简便计算。
教学过程:
一 、复习
1、复习分数混合运算的运算顺序。
2、复习乘法的简便运算定律
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
二、巩固练习
1、练习三第1题:应用运算定律进行简便计算(引导学生仔细观察算式特点,正确运用定律进行计算)。
2、练习三第三题:分数混合运算(提醒学生注意运算顺序,如果可以应用韵律进行计算的题目也可以选择用简便方法计算,如: - × = ×(1- ); ×(5- )既可以按运算顺序先算小括号里面的,也可以应用乘法分配律进行计算。
3、练习三第2题:一朵花要用 张纸,一个同学做了9朵,列式 ×9,另一个同学做了11朵,列式 ×11,他们一共做了 ×9+ ×11(朵),学生还可能这样列式: ×(9+11),引导学生发现,这种列式实际上就是乘法分配律的两种形式。
4、练习三第8题:改错题,这两道题主要都是运算顺序错误,学生在纠错的同时也巩固了先乘除、后加减的运算顺序。
5、练习三第6题:要求学生观察题目,能用简便算法的要用简便算法。
6、练习三第4、5、9题:先让学生分析题意,再列式计算。计算中提醒学生注意运用定律使计算简便。
三、布置作业
完成相关的练习册。
教学追记:
本节课本只是一节计算课,但我不想应用传统的讲授法来告诉学生,整数乘法的运算同样适用分数,然后按部就班的教学例题,强制性地要求学生按照老师的教法来解题。我认为这样的教学剥夺了学生学习的主动性和自主性。因而这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用四人学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内最后验证。在这个过程中,学生完全是学习的主人,而教师只是辅助性的导,包括后面例题的教学都充分体现了这一理念。本堂课学生的学习兴趣和学习自信都充分地得到了激发。
2、解决问题
(1)分数乘法一步应用题
教学目标:
1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。
教学重点:理解题中的单位“1”和问题的关系。
教学难点:抓住知识关键,正确、灵活判断单位“1”。
教学过程:
一、复习
1、先说下列各算式表示的意义,再口算出得数。
12× ×
2、列式计算。
(1)20的 是多少? (2)6的 是多少?
3、学生得出:求一个数的几分之几用乘法。
二、新授
1、教学例1
(1)引导学生抓住关键句“我国人均耕地面积仅占世界人均耕地面积的 ”,结合线段图理解题意,找到解题思路。
(2)组织学生讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是 表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是
求2500的 是多少)
(3)在分析题意的基础上,学生独立列式、计算。
2500× =1000(平方米)
2、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。
3、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。
三、练习
1、练习四第2题:让学生先找出分率句中隐藏的单位“1”--全世界的丹顶鹤数只。
2、练习四第3题:让学生先找到分率句和单位“1”,再独立列式解答。
四、总结
解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出分率句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)
教学追记:
本堂课是解决“求一个数的几分之几是多少”的问题,教学中,我能紧扣分数乘分数的意义进行复习,并事先复习如“20的 是多
少?”的文字题,为解决与此相似的应用题做好准备。由于本节课是分数应用题学习的初始,因而教学中,我除了帮助学生分析、理解题意之外,更重要的还在于教给学生分析、解答分数应用题的方法,特别是在如何找单位“1”这个关键点上,更是花了较多的时间,但我认为这是十分必要的。
(2)两步分数乘法应用题
教学目标:
1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。
2、发展学生思维,侧重培养学生分析问题的能力。
教学重点:理解数量关系。
教学难点:根据多几分之几或少几分之几找出所求量的对应分率。
教学过程:
一、 复习
1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?
(1)一块布做衣服用去 。 (2)用去一部分钱后,还剩下 。
(3)一条路,已修了 。 (4)水结成冰,体积膨胀 。
(5)甲数比乙数少 。
2、口头列式:
(1)32的 是多少? (2)120页的 是多少?
(3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了 ,降低了多少分贝?
(4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的 ,人现在听到的声音是多少分贝?
3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?
4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应
用题”。
二、新授
1、教学例2
(1)运用线段图帮助学生分析题意,寻找解题方法。
(2)让学生说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?让后把线段图表示完整。
(3) 四人小组讨论,根据线段图提出解决办法,并列式计算。
解法一:80-80× =80-10=70(分贝)
(4)鼓励学生根据题意、结合线段图,想出第二种解答方法。
解法二:80×(1- )=80× =70(分贝)
(5)学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的几份之几是多少的方法求出这个部分量。
2、巩固练习:P20“做一做”
3、教学例3
(1)读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多 ”表示什么意思?(组织学生讨论,说说自己的理解)
(2)引导学生将句子转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的 ”。着重让学生说说谁与谁比,把谁看作单位“1”。
(3)出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。
解法一:75+75× =75+60=135(次)
解法二:75×(1+ )=75× =135(次)
4、巩固练习:P21“做一做”(列式后让学生说说算式各部分表示什么)
三、练习
1、练习五第2、3题:引导学生抓住题目中关键句子分析,找到谁与谁比,谁是表示单位“1”的量。
2、练习五第3、4题:学生依据例题引导的解题方法,独立完成3、4题。
四、布置作业
练习五第7、8、9、10题。
教学追记:
例2和例3都是在理解和掌握了求一个数的几分之几是多少的问题的思路和方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位“1”,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。
3、倒数的认识
教学目标:
1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。
3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。
教学重点:
理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。
教学难点:掌握求倒数的方法
教学过程:
一、导入
1、口算:
(1) × × 6× ×40
(2) × × 3× ×80
2、今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识
二、新授
1、教学倒数的意义。
(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。
(2)学生汇报研究的结果:乘积是1的两个数互为倒数。
(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)
(3)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)
2、教学求倒数的方法。
(1)写出 的倒数: 求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。
(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
6=
3、教学特例,深入理解
(1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)
(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)
3、巩固练习:课本24页“做一做”
(1)学生独立解答,教师巡视。
(2)汇报时有意识地让学有困难的学生说一说求倒数的方法。
三、练习
1、练习六第2题:同桌互说倒数。
2、辨析练习:练习六第3题“判断题”。
3、开放性训练。
×( )=( )× =( )×( )
四、总结
你已经知道了关于“倒数”的哪些知识?你联想到什么?还想知道什么?
教学追记:
倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。
4、整理和复习
复习目标:
1、使学生掌握分数乘法的计算方法,并能运用这个方法进行相关计算。
2、使学生能分辨清楚先乘后加减的运算顺序,并能熟练地应用乘法运算定律进行简便计算。
3、引导学生准确地找到单位“1”,并能熟练地解答一步和二步的乘法应用题。
复习重点:
引导学生找准单位“1”,分析应用题的数量关系。
复习难点:
让学生正确、独立地分析应用题的数量关系。
复习过程:
一、复习分数乘法
1、学生独立计算P26第1题,并思考式子的意义及计算法则。
2、分数乘法的意义
(1)分数乘整数的意义是什么?(表示几个相同加数的和或表示一个数的几倍是多少)
(2)一个数乘分数的意义是什么?(表示一个数的几分之几是多少)
3、分数乘法的计算法则
(1)分数乘整数:把能约分的先约分,然后把整数与分子相乘,分母不变。
(2)分数乘分数:同样把能约分的先约分,然后用分子乘分子,分母乘分母。
4、练习:练习七第1题。
二、复习计算及简便计算
1、复习乘加乘减的运算顺序:先算二级运算,再算一级运算,有括号的要先算小括号里面的,再算中括号里面的。
2、复习乘法的运算定律:
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
3、 观察P26第2题,说说这三题适合运用什么运算定律?为什么?然后学生独立完成。
4、 练习:练习七第4题。
三、复习分数乘法应用题
1、复习解答分数乘法应用题的步骤:
(1)找到题目中的分率句,确定单位“1”。
(2)根据题目中的数量关系,求出所要求的部分量。
2、P26第3题
(1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?
(2)根据题意分析数量关系,然后列式计算,全班讲评。
3、练习:练习七第6题。
四、复习倒数
1、复习倒数的意义:乘积是1的两个数互为倒数。
2、互为倒数的两个数有什么特征?(分子、分母的位置刚好颠倒位置)1的倒数是多少?0有没有倒数?
3、复习写一个数的倒数的方法:交换原来分子和分母的位置(注意强调如果是整数要先把它写成分母为1的分数,然后在交换分子和分母的位置。)
4、练习:练习七第7题。
五、练习
练习七第2、3、5题(学生独立列式计算,指名板演,讲评时让学生说清是怎样思考的)
篇3:-上学期六年级数学教案第二单元分数乘法 (人教新课标六年级上册)
主备人:孙菲
新知识点:
分数乘法
分数乘法 解决问题
倒数的认识
教学目标:
1、结合具体情境,使学生理解分数乘法的意义,引导学生充分利用已有的知识和经验,探索分数乘法的计算法则及分数连乘的计算方法,并能够熟练地进行计算。
2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。
3、使学生理解分数乘法应用题中的数量关系,会解答“求一个数的几分之几是多少”的简单实际问题,增强应用数学的意识。
4、通过组织学生进行观察比较、讨论交流、归纳概括等活动,理解倒数的意义,掌握求倒数的方法。
5、结合计算和解题过程,进一步培养学生仔细计算、认真检查和验算的良好习惯。
教学重点:
分数乘法的意义和计算法则。
教学难点:
1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。
2、分数乘法计算法则的推导。
课时安排:
1、分数乘法………………………………………………………………5课时
2、解决问题………………………………………………………………4课时
3、倒数的认识……………………………………………………………1课时
4、整理和复习……………………………………………………………2课时
1、分数乘法
(1)分数乘整数
教学内容:
教材第8、9页的内容及练习二的第1、2题。
教学目标:www.xkb1.com
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:
使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:
引导学生总结分数乘整数的计算法则。
教学过程:www.xkb1.com
一、 导入
1、出示复习题。
(1)5个12是多少?
用加法算:12+12+12+12+12+12=60
用乘法算:12×5=60
整数乘法的意义:就是求几个相同加数的和的简便运算。
(2)计算:
+ + = + + =
同分母分数的加法计算法则:分子相加的和作分子,分母不变。
2、引出课题。
+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、 教学实施
1、利用 + + 教学分数乘法。
(1)这道加法算式中,加数是多少?(都是 )
(2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法, ×3)
(3) + + = ,那么 + + = ×3,所以 ×3=_______= 。同学们想想看, ×3= 计算过程是怎样的?谁能把它补充完整。
2、出示例1。
(1)理解句意:题干中的“相当于”就是“是”或“占”的意思,就是人跑一步的距离是袋鼠跳一下距离的 或占袋鼠跳一下距离的 。
(2)画出线段图,学生独立列式解答。
①.引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
②.引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?
(3)探究意义新课标第一网
3个 是多少,可以列成加法算式: + + = 。
将加法算式改写乘法算式: + + = ×3 =
从上式中可以看出: ×3表示3个 相加。
(4)小结:分数乘法的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。
4、练习:练习完成“做一做”第2题。
5、教学例2
(1)出示 ×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:
A、先约分再计算;
B、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。
老师强调:能约分的可以先约分再计算,这样比较简便,不易出错。
三、练习:
1.完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)
2.“做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)
四、作业:
做练习二第1、2、4题。
五、课堂小结:
通过这节课的学习,我们要理解并掌握分数乘法与整数乘法的意义相同,都是求几个相同加数的和的简便运算。分数乘整数应该用分数的分子和整数相乘的积作分子,分母不变。计算分数乘整数时,能约分的要先约分,再计算。
篇4:第二单元分数乘法 教学计划(人教新课标六年级上册)
单元目标:
1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。
2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。
3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。
1、 使学生理解倒数的意义,掌握求倒数的方法。
单元重点:
分数乘法的意义和计算法则。
单元难点:
1、 理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。
2、 分数乘法计算法则的推导。
1、分数乘法
(1)分数乘整数
教学目标:
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则。
教学过程:
一、 复习
1.出示复习题。
(1)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少? 9个11是多少? 8个6是多少?
(2)计算:
+ + = + + =
2.引出课题。
+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、 新授
1、 利用 + + 教学分数乘法。
(1) 这道加法算式中,加数各是多少?(都是 )
(2) 表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法, ×3)
(3) + + =9,那么 + + = ×3,所以 ×3=____________=9。同学们想想看, ×3=9计算过程是怎样的?谁能把它补充完整。
2、 出示例1,画出线段图,学生独立列式解答。
(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?(列式: ×3 = )
3、 结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。
4、 练习:练习完成“做一做”第2题。新课标第一网
5、 教学例2
(1)出示 ×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。三、练习
1、 完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)
2、 “做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)
三、 作业
练习二第1、2、4题。
篇5:-上学期六年级数学教案(2)分数乘分数 (人教新课标六年级上册)
主备人:孙菲
教学内容:
教材第10页的内容及练习二的第3、5、6题。
教学目标:
1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解分数乘分数的意义,掌握分数乘分数的计算法则,学会分数乘分数的简便计算。
2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:
理解分数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:
推导算理,总结法则。
教学过程:
一、导入
1、计算下列各题并说出计算方法。
× × ×
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、口头列式。
强调:求一个数的几分之几是多少,要用乘法计算。
二、教学实施
1、教学例3
(1)出示条件和问题:
每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?
(2)提问:通过已知条件和问题,你知道了什么?
引导学生说出:每小时粉刷 是工作效率, 小时是工作时间,这道题是求工作总量。
(3)根据公式“工作效率×工作时间=工作总量”,
学生列式: ×
2、探究计算方法。
(1)提问: × 等于多少?(学生可能会说出得 。)
追问:你是怎么算的?
学生可能只是说出结果,但不能清楚地说出算理。
(2)理解算理。
提问: × 表示什么意思呢?(求 的 是多少。)
老师:请同学们拿出一张纸,用它表示这面墙,涂出它的 。
学生动手折纸。
老师:涂色部分占这张纸的几分之几?( )
提问: 的 怎样表示?
启发:再折一折,把5份中的1份再平均分成几份?(4份)
学生再动手折纸,用不同的颜色表示出 的 。
提问: 的 占这张纸的几分之几?
板书: 的 是 。
一、 总结算法。新课标第一网
提问: × = 应该怎样计算?
引导:分母5和分母4相乘的积作新分母,分子1和分子1相乘的积作新分子。
板书:
× = = 。
问题:用这种方法我们再来计算一下 小时粉刷多少呢?
让学生用前面的方法涂色、推导、计算,自主解决问题。
提问: × 等于多少?表示什么意思?
( 乘 表示 的 是 。)
追问:你是怎样算的?
质疑:分数乘分数应该怎样计算?
归纳:分数乘分数,用分母与分母相乘的积作分母,分子与分子相乘的积作分子。
三、练习:
做练习二第5题。
四、作业:
做练习二第3、6题。五、课堂小结分数乘分数的意义和计算方法。
(1)意义:分数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。
篇6:-上学期六年级数学教案(2)复习分数乘法的应用题及倒数的认识 (人教新课标六年级上册)
主备人:孙菲
教学内容:
教材第26页的第3、4题及练习七的第2、3、5、6、7题。
教学目标:
1、通过复习分数乘法的应用题,进一步加深对“求一个数的几分之几是多少”的分数意义的理解。
2、引导学生准确地找到单位“1”,并能熟练地解答一步和二步的乘法应用题。
3、提高学生分析、解答分数应用题的能力。
教学重点:
引导学生找准单位“1”,分析应用题的数量关系。
教学难点:
让学生正确、独立地分析应用题的数量关系。
教学过程:
一、复习分数乘法应用题
1、复习解答分数乘法应用题的步骤:
(1)找到题目中的分率句,确定单位“1”。
(2)根据题目中的数量关系,求出所要求的部分量。
2、P26第3题
(1)学生独立审题,分析数量关系。
(2)分别找到两道题的单位“1”,并说说这两道题有何不同?
(3)根据题意分析数量关系,然后列式计算,全班讲评。
3、练习:练习七第6题。
二、复习倒数的知识
1、复习倒数的意义:乘积是1的两个数互为倒数。
2、互为倒数的两个数有什么特征?(分子、分母的位置刚好颠倒位置)
1的倒数是多少?
0有没有倒数?
3、复习写一个数的倒数的方法:交换原来分子和分母的位置(注意强调如果是整数要先把它写成分母为1的分数,然后在交换分子和分母的位置。)
4、判断下面各题的错对,说明理由。
(1) 是倒数。
(2) 的倒数一定是 。
(3)小数没有倒数。
5、练习:练习七第7题。
三、作业
练习七第2、3、5题(学生独立列式计算,指名板演,讲评时让学生说清是怎样思考的)
四、课堂小结
通过复习,我们能正确分析“求一个数的几分之几是多少”的应用题的数量关系,可以熟练地求一个数的倒数。
篇7:(1)分数乘法一步应用题 教学计划(人教新课标六年级上册)
(4)练习课
教学目标:
1、使学生掌握分数乘加、乘减混合运算的顺序,能正确地进行计算。
2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。
教学重点:熟练掌握运算定律,灵活、准确、合理地进行简便计算。
教学难点:熟练掌握运算定律,准确、合理地进行简便计算。
教学过程:
一 、复习
1、复习分数混合运算的运算顺序。
2、复习乘法的简便运算定律
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
二、巩固练习
1、练习三第1题:应用运算定律进行简便计算(引导学生仔细观察算式特点,正确运用定律进行计算)。
2、练习三第三题:分数混合运算(提醒学生注意运算顺序,如果可以应用韵律进行计算的题目也可以选择用简便方法计算,如: - × = ×(1- ); ×(5- )既可以按运算顺序先算小括号里面的,也可以应用乘法分配律进行计算。
3、练习三第2题:一朵花要用 张纸,一个同学做了9朵,列式 ×9,另一个同学做了11朵,列式 ×11,他们一共做了 ×9+ ×11(朵),学生还可能这样列式: ×(9+11),引导学生发现,这种列式实际上就是乘法分配律的两种形式。
4、练习三第8题:改错题,这两道题主要都是运算顺序错误,学生在纠错的同时也巩固了先乘除、后加减的运算顺序。
5、练习三第6题:要求学生观察题目,能用简便算法的要用简便算法。
6、练习三第4、5、9题:先让学生分析题意,再列式计算。计算中提醒学生注意运用定律使计算简便。
三、布置作业
完成相关的练习册。
教学追记:
本节课本只是一节计算课,但我不想应用传统的讲授法来告诉学生,整数乘法的运算同样适用分数,然后按部就班的教学例题,强制性地要求学生按照老师的教法来解题。我认为这样的教学剥夺了学生学习的主动性和自主性。因而这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用四人学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内最后验证。在这个过程中,学生完全是学习的主人,而教师只是辅助性的导,包括后面例题的教学都充分体现了这一理念。本堂课学生的学习兴趣和学习自信都充分地得到了激发。
2、解决问题
(1)分数乘法一步应用题
教学目标:
1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。
教学重点:理解题中的单位“1”和问题的关系。
教学难点:抓住知识关键,正确、灵活判断单位“1”。
教学过程:
一、复习
1、先说下列各算式表示的意义,再口算出得数。
12× ×
2、列式计算。
(1)20的 是多少? (2)6的 是多少?
3、学生得出:求一个数的几分之几用乘法。
二、新授
1、教学例1
(1)引导学生抓住关键句“我国人均耕地面积仅占世界人均耕地面积的 ”,结合线段图理解题意,找到解题思路。
(2)组织学生讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是 表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是
求2500的 是多少)
(3)在分析题意的基础上,学生独立列式、计算。
2500× =1000(平方米)
2、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。
3、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。
三、练习
1、练习四第2题:让学生先找出分率句中隐藏的单位“1”--全世界的丹顶鹤数只。
2、练习四第3题:让学生先找到分率句和单位“1”,再独立列式解答。
四、总结
解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出分率句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)
教学追记:
本堂课是解决“求一个数的几分之几是多少”的问题,教学中,我能紧扣分数乘分数的意义进行复习,并事先复习如“20的 是多
少?”的文字题,为解决与此相似的应用题做好准备。由于本节课是分数应用题学习的初始,因而教学中,我除了帮助学生分析、理解题意之外,更重要的还在于教给学生分析、解答分数应用题的方法,特别是在如何找单位“1”这个关键点上,更是花了较多的时间,但我认为这是十分必要的。
篇8:-上学期六年级数学教案解决问题 (人教新课标六年级上册)
主备人:孙菲
(1)“求一个数的几分之几是多少”的一步应用题
教学内容:
教材第17页的内容及练习四的第2、3题。
教学目标:
1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、借助线段图,能正确解答求一个数的几分之几是多少的实际问题。
3、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。
4、培养学生认真审题、仔细计算的好习惯。
教学重点:
理解“求一个数的几分之几是多少”用乘法计算的算理。
教学难点:
正确找准单位“1”所对应的量,初步学会画线段图。
教学过程:
一、复习
1、先说下列各算式表示的意义,再口算出得数。
12× ×
2、列式计算。
(1)20的 是多少? (2)6的 是多少?
3、学生得出:求一个数的几分之几用乘法。
二、教学实施
1、谈话导入。
老师:关于分数乘法的意义大家已经很清楚了,这节课,我们将运用它来解决生活、生产中的一些实际问题。
2、教学例1
(1)学生读题,理解题意。
(2)用图表示数量关系。
老师:我们理解了题意,同学们能用图表示题意吗?
学生可能会有以下表示方法:
①
?㎡
2500㎡
②
?㎡
2500㎡
老师:只要学生表示的数量关系对,老师就要给予肯定。
(3)指导学生画线段图。
(4)分析题中的数量关系。
①引导学生抓住关键句“我国人均耕地面积仅占世界人均耕地面积的 ”,结合线段图理解题意,找到解题思路。
②组织学生讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是:
(求2500的 是多少)
③在分析题意的基础上,学生独立列式、计算。
2500× =1000(平方米)
3、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。
4、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。
三、练习www.xkb1.com
1、练习四第2题:让学生先找出分率句中隐藏的单位“1”--全世界的丹顶鹤数2000只。
2、练习四第3题:让学生先找到分率句和单位“1”,再独立列式解答。
四、作业
做练习四的第1、3、7题。
五、课堂小结xkb1.com
解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出分率句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)
篇9:-上学期六年级数学教案(2)分数连成应用题 (人教新课标六年级上册)
主备人:孙菲
教学内容:
练习四的第4、5、9题。
教学目标:
1、使学生学会分析分数乘法应用题的数量关系,会应用一个数乘分数的意义解答两步计算的分数乘法应用题。
2、培养学生解决问题的能力,提高学生的分析能力。
3、进一步提高学生思考问题的逻辑性。
教学重点:
掌握分数连乘的计算方法,突出一次计算。
教学难点:
会解答用分数连乘计算的实际问题。
教学过程:
一、导入
1、说出下面算式表示的意义,再口算出得数。
×2 = ×3 = × = × = 36× =
2.说出下面各题中的两个量,应该把谁看作单位“1”。然后给每题补充一个已知条件和一个问题,使它成为一道一步计算的分数乘法应用题。
(1) 母牛的头数是公牛的 。
(2) 公牛头数的 和母牛的头数相等。
(3) 母牛的头数相当于公牛头数的 。
(4) 公牛的头数相当于母牛头数的 。
学生同桌讨论,集体订正。
二、教学实施
1.出示题目。xkb1.com
公牛有30头,母牛的头数相当于公牛的 ,小牛的头数相当于母牛的 ,小牛有多少头?
学生读题,明确题意。
2、指导学生画线段图。
提问:怎样用线段图表示已知条件和问题?
提问:要想求小牛的头数,就要知道哪个量?(母牛的头数)
母牛的头数又和哪个数量有关?(公牛的头数)
先画一条线段,表示哪个数量?(公牛的头数)
在画一条线段,表示那个数量?(母牛的头数)画多长?根据什么?
表示小牛的头数的线段应该怎样画?
3、学生独立画图。www.xkb1.com
(老师指导)
4、分析数量关系。
提问:求小牛有多少头,必须先求什么?(母牛的头数)
提问:求母牛的头数应该怎样做?
提问:解答这道题需要几步?
5、列式解答。
根据以上分析,这道题应该怎样解答?
列式:30× ×
根据综合式,让学生说一说每一步分别求的是什么。每一步分别是把哪个数量看作单位“1”。
强调:分数连乘不必像整数、小数连乘那样,:逐次计算,可以一次计算,遇到整数和分数相乘,要用整数与分数的分母约分,不能约分的直接与分数的分子相乘。
三、练习
做练习四的第4题。
四、做业
做练习四的第5、9题。
五、课堂小结
解答两步计算的分数乘法应用题与解答一步计算的分数乘法应用题的相同点都是求一个数的几分之几是多少的应用题,不同点是分数连乘应用题要连续求一个数的几分之几是多少。解题关键是要找准每一步的单位“1”。
篇10:和复习教学案例(人教新课标六年级上册)
整理和复习
教学目标:
⒈根据圆周长与面积的计算公式掌握圆周长与面积的计算方法。
⒉培养学生灵活、全面的运用知识的能力,及运用所学知识解决简单实际问题的能力。
⒊培养学生认真审题的良好学习习惯。
教学重点:灵活运用周长或面积公式解决实际问题。
教学过程:
一、周长与面积的区别。
1、什么是圆?圆周长的计算公式是什么?圆面积公式的计算公式是什么?
2、计算下题。求出它的周长与面积。
(1)学生动手计算。
(2)周长与面积有什么不同?
概念不同,计算公式不同,单位不同。
3、判断。两个图形相比较,哪个图形的周长长,哪个图形的面积就大。
(错。周长的长短和面积的大小没有必然的联系。)
二、运用所学知识解决实际问题。
1、一个圆形花坛,直径是4米,周长是多少米?
3.14×4=12.56(米)
2、一个圆形花坛,周长是12.56米,直径是多少米?
12.56÷3.14=4(米)
3、一个圆形花坛的半径是2米,它的面积是多少平方米?
3.14×22=12.56(平方米)
4、一个圆形花坛的周长是12.56米,它的面积是多少平方米?
r=12.56÷(2×3.14)= 2(米) 3.14×22=12.56(平方米)
5、一个环形铁片,外直径是6米,内直径是4米,它的面积是多少平方米?
⑴ 3.14×( )2=28.26(平方米)
3.14×( )2=12.56(平方米)
28.26-12.56=15.7 (平方米)
⑵ - = 5(平方米)
3.14×5=15.7(平方米)
6、先测量所需要的数据,再计算半圆的周长和面积。(解答结果保留整厘米数)
7、一个圆形餐桌面直径是2m,它的周长多少米?它的面积是多少米?如果一个人需要0.5M宽的位置就餐,这张餐桌大约能坐多少人?+
三、综合练习。
1、判断对错,
(1)圆的半径都相等。 ( )
(2)在同圆或等圆中圆周长约是半径的6.28倍。 ( )
(3)半圆的周长是圆周长的一半。( )
2、只列式不计算。
(1)一个圆形铁板的半径是5分米,它的面积是多少平方分米?
(2)一个圆形的铁板的直径是6分米,它的面积是多少平方分米?
(3)一个圆形铁板的周长是28.26分米,它的面积是多少平方分米?
3、说一说下面各题的解题思路。
(1)一个圆形花坛,直径是5米,小明围着它跑了5圈,小明一共跑了多少米?
(2)在草地的木桩上栓着一只羊,绳长3米,这只羊能吃到草的面积最大是
多少平方米?
五、 布置作业
练习十七1-3,思考第4题。
确定起跑线
教学目标:
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
教学重点:如何确定每一条跑道的起跑点。
教学难点:确定每一条跑道的起跑点。
教学过程:
一、 提出研究问题。(出示运动场运动员图片)
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)
2、各条跑道的起跑线应该向差多少米?
二、 收集数据
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)
三、 分析数据
学生对于获取的数据进行整理,通过讨论明确一下信息:
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、 得出结论
1、看书P76页最后一图:
2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5π)
五、 课外延伸
200m跑道如何确定起跑线?
篇11:《分数乘分数》导学案 (人教新课标六年级上册)
2-2 <<分数乘分数>>
学生___________班级_______家长签字____________日期________
【学习目标】1、理解分数乘分数的意义,掌握分数乘以分数的计算法则。
2、发展观察推理能力。 3、善于交流合作,对学习有兴趣。
【学习重难点】1、重点是理解一个数乘分数的意义,掌握分数乘分数的计算方法。
2、难点是推导算理,总结法则。
【学习过程】
一、复习导入: 1、计算并说出方法 × = × = × =
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、这节课我们来学习分数乘以分数的意义和计算方法。
二、探索新知:
(一)、观察P10例题3主题图,自主探究以下问题:
1、工作效率、工作时间、工作总量之间的关系是什么?____________________________
根据此关系列式解决“ 小时粉刷这面墙的几分之几?”________________________
2、动手操作,把一张纸张看作一面墙,先涂出1小时粉刷的面积,即这面墙的 ,再涂出 小时粉刷的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”
3、根据涂色结果得出 × = ,由此推导出计算方法: × = =
4、自主完成P10“想一想”和P13练习二第5题。看谁做得即对又快。组长检查核对。
5、归纳总结一个数乘分数的意义和计算方法。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用___________________________________
(二)、自学书本P11例题4
1、根据“速度×时间=路程”的数量关系列出算式:___________________________
2、独立计算,交流方法,明确分数乘分数也可以先约分再乘。明确约分的书写格式。
3、想一想分数乘分数怎样约分?分数乘整数怎样约分?
三、知识应用: 独立完成P11“做一做”,组长检查核对,提出质疑。
四、层级训练: 1、巩固训练:完成练习二第3、6、9题。
2、拓展提高:练习二第7、8、10题。
五、总结梳理:
回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)
自我展示台:(写出你的发现或见解)
篇12:分数除法 备课资料(人教新课标六年级上册)
(3)分数混合运算
教学目标:
1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。
2、 通过练习,培养学生的计算能力及初步的逻辑思维能力。
3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。
4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。
教学重点:确定运算顺序再进行计算。
教学难点:明确混合运算的顺序。
教学过程:
一、复习
1、复习整数混合运算的运算顺序
(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。
(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。
2、说出下面各题的运算顺序。
(1)428+63÷9―17×5 (2)1.8+1.5÷4―3×0.4
(3)3.2÷[(1.6+0.7)×2.5] (4)[7+(5.78-3.12)]×(41.2―39)
二、新授
1、教学例4
(1)学生读题,明确已知条件及问题,尝试说说自己的解题思路。
(2)根据学生的回答,归纳出两种思路:
A、可以从条件出发思考,根据彩带长8m ,每朵花用 m 彩带,可以先算出一共做了多少朵花。
B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。
(3)学生独立列出综合算式后,让他们说说运算顺序,再进行计算。
2、巩固练习:P34“做一做”
(1)学生独立完成第一题,然后全班校对。引导学生比较计算分数连除或连乘除的两种算法,通过比较,使学生发现统一约分后再计算比分步计算简便。
(2)学生读题理解题意,指名说说解题思路,再让学生独立列式计算。
三、练习
1、练习九第1题:前三题提倡学生选择统一成乘法的方法进行计算。
2、练习九第2-4题
(1)第2题:可以先求每层有多高,再求楼的楼板到地面的高度,但要注意引导学生意识到6楼楼板到地面的高度实际上只有5层楼的高度。
(2)第3题可引导学生形成两种思路:A、先求每小时录入了这篇论文的几分之几,再求8小时可录入这篇论文的几分之几;B、先求8小时是3小时的几倍,再求8小时录入几分之几。
(3)第4题同样有两种方法:A、可以先求一共能装多少袋,列式:240÷ × ;B、可以先求装完的 有多少千克,综合算式是240× ÷ 。
四、布置作业
练习九第5-9题。
教学追记:
本堂课虽是应用题形式的例题,但实为分数混合运算的计算课,因而在课初始,我便从复习整数及小数的运算顺序入手,重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练习加强计算的训练。
2、解决问题
(1)已知一个数的几分之几是多少求这个数的应用题
教学目标:
1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重点:
弄清单位“1”的量,会分析题中的数量关系。
教学:难点:
分数除法应用题的特点及解题思路和解题方法。
教学过程:
一、复习
1、出示复习题:
根据测定,成人体内的水分约占体重的 ,而儿童体内的水分约占体重的 ,六年级学生小明的体重为35千克,他体内的水分有多少千克?
2、让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。
3、选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。
小明的体重× =体内水分的重量
4、指名口头列式计算。
二、新授
1、教学例1的第一个问题:小明的体重是多少千克?
(1)读题、理解题意,并画出线段图来表示题意:
(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。 小明的体重× =体内水分的重量
(3)这道题与复习题相比有什么相同点和不同点?(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)
(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)
(5)启发学生应用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)
2、解决第二个问题:小明的体重是爸爸的 ,爸爸的体重是多少千克?
(1)启发学生找到分率句,确定单位“1”。
(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。
(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)
爸爸:
小明:
爸爸的体重× =小明的体重
①方程解:解:设爸爸的体重是χ千克。 ②算术解: 35÷ =75(千克)
χ=35
χ=35÷
χ=75
3、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)
三、练习
1、练习十第1-3题。(先分析数量关系式,然后确定单位“1”,最后再进行解答。第二题注意引导学生发现250ml的鲜牛奶是多余条件)
2、练习十第6题(引导学生先求出单位“1”--爸爸妈妈两人的工资和1500+1000,再根据数量关系式进行计算)
四、总结
这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。
教学追记:
本堂课我设计了“题目--线段图--等量关系式--解决问题”这样四个环节来教学例题的第(1)个问题,本是很清晰的一个教学思路,意在引导学生解决问题的同时教给他们此类问题的解决方法。但由于教学时,我对线段图环节的教学引导不足,没有充分发挥线段图的作用,有些流于形式,因此学生在等量关系的推导上就未能如教师预计般顺利。下次如果再有类似的教学,我将注重思索如何将题目、线段图和等量关系式三者更有机地结合起来。
篇13:分数除法 备课资料(人教新课标六年级上册)
第三单元 分数除法
单元目标:
1、理解并掌握分数除法的计算方法,会进行分数除法计算。
2、会解答已知一个数的几分之几是多少求这个数的实际问题。
3、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。
4、能运用比的知识解决有关的实际问题。
单元重点:
一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。
单元难点:
一个数除以分数的计算法则的推导。
1、 分数除法
(1)分数除法的意义和整数除以分数
教学目标:
1、 通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、 动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、 培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教学过程:
一、复习
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题
×3 × × × ×6 ×
二、新授
1、教学例1
(1)出示插图及乘法应用题,学生列式计算:100×3=300(克)
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)
B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)
(3)将100克化成 千克,300克化成 千克,得出三道分数乘、除法算式。
×3= (千克) ÷3= (千克) ÷3=3(盒)
(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
2、巩固分数除法意义的练习:P28“做一做”
3、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的 平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的 平均分成2份,每份是这张纸的 。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
A、 ÷2= = ,每份就是2个 。
B、 ÷2= × = ,每份就是 的 。
(4)如果把这张纸的 平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察 ÷2和 ÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、练习
÷3 ÷3 ÷20 ÷5 ÷10 ÷6
四、总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
(2)一个数除以分数
教学目标:
1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。
教学重点:
总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。
教学过程:
一、复习
1、列式,说清数量关系
小明2小时走了6 km,平均每小时走多少千米?(速度=路程÷时间)
2、计算下面,直接写出得数
×4 ×3 ×2 ×6
÷4 ÷3 ÷2 ÷6
二、新授
1、默读例3,理解题意,列出算式:2÷ ÷
2、探索整数除以分数的计算方法
(1)2÷ 如何计算?引导学生结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示 小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是 小时走的路程)
(3)引导学生讨论交流:已知 小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据学生的回答把线段图补充完整,并板书出过程。
先求 小时走了多少千米,也就是求2个 ,算式:2×
再求3个 小时走了多少千米,算式:2× ×3
(5) 综合整个计算过程:2÷ =2× ×3=2×
2、小结出计算法则:从上面这个推算过程,我们发现--整数除以,分数等于用整数乘这个分数的倒数。
3、计算 ÷ ,探索分数除以分数的计算方法
(1)学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。
÷ = × =2(km)
(2)学生用自己的方法来验证结果是否正确。
4、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、练习
1、P31“做一做”的第1、2题。
2、练习八第2、4题。
教学追记:
虽说现在的教材已经把意义淡化了,但我在教学中依然采用了整数与分数对比,乘法与除法对比的方式,揭示了分数除法的意义。针对新教材的特点,对于分数除法的意义,我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,由于有了整数的基础和前面对于意义的理
解,学生掌握得也较顺利。在分数除以整数的教学上,我把学习的主动权交给学生,让他们动手操作、集思广益,根据操作计算方法。于是学生们有的模仿分数乘整数的方法,分母不变,把分子除以整数;有的根据题意及直观操作,得出除以2也就是平均分成两份,每份就是原来的二分之一,因而除以2就是乘上2的倒数。对于学生的想法,我都充分予以肯定,并通过练习让学生比较,选出他们认为适用范围更广的方式。由于学生理解透彻了,所以后面分数除以分数和整数除以分数的教学上,学生轻而易己地就掌握了计算方法。
【上学期六年级数学教案(1)复习分数乘法的意义和计算方法 (人教新课标六年级上册)】相关文章:






文档为doc格式