基于FGA的直接数字频率合成器的优化设计论文
“Krylov”通过精心收集,向本站投稿了4篇基于FGA的直接数字频率合成器的优化设计论文,以下是小编整理后的基于FGA的直接数字频率合成器的优化设计论文,欢迎阅读分享。
篇1:基于FGA的直接数字频率合成器的优化设计论文
基于FGA的直接数字频率合成器的优化设计论文
摘要:介绍了DDS的基本工作原理,针对传统DDS存在的主要问题,提出了基于流水线结构的累加器和基于波形对称的ROM优化设计,并在开发软件Quartus II上仿真,验证了优化设计的正确性。不仅提高了系统的运算速度,而且也节省了硬件资源。
关键词:FPGA;DDS;流水线结构;仿真
1.引言
随着科技的飞速发展,对信号发生器的要求越来越高,传统分立式模拟电路来难满足。直接数字频率合成法(Direct Digital Frequency Synthesis简称DDFS或DDS)具有频率稳定度高、分辨率高、切换时间短、相位变化连续、易于实现各种数字调制、集成度高等特点,能很好的满足各种需求。
因此,DDS技术在通信、雷达、电子对抗、仪器测试等领域都有广泛的应用。专用DDS芯片在控制方式、频率控制等方面不灵活,很多时候不能满足系统的要求,利用FPGA来设计符合自己需要的DDS系统就是一个很好的解决方法。
2.DDS的工作原理
DDS是利用数字相位累加产生线性变化的数字相位输出信号,通过波形数据查找表,获得对应于相位信号的数字化幅度信号,再通过数模转换器(DAC)获得模拟信号输出。一个基本的DDS系统由基准时钟fclk、相位累加器、相位/幅值查找表(ROM)、数模转换器(DAC)及低通滤波器(LPF)组成,如图1所示。
工作原理:预先在ROM中存入所需波形的幅度编码,每来一个时钟信号,N位的相位累加器将频率控制字K累加,同时累加器输出序列的高M位去寻址相位/幅值查找表,得到一系列离散的幅度编码(Y位)。该幅码经数模转换后得到模拟的阶梯电压,再经低通滤波器平滑后,就可得到所需要的波形信号。
DDS的输出信号频率fout=K·fclk/2N,频率分辨率为Δfout=foutmin/2N,实际最高输出频率取foutmax=fclk×40%,相对带宽为foutmax/foutmin=2N×40%。
3.DDS的优化设计
传统DDS结构的运算速度受相位累加器运算速率的限制,输出频率分辨率受相位/幅值查找表(ROM)存储容量的'限制。大多数情况下频率控制字的位数都为20位以上,而传统DDS结构的相位累加器是采用一级式全加器和寄存器实现的。多位数的加法计算是由低到高串行进行的,这样会因为位数多而影响计算速度。传统DDS结构的相位/幅值查找表(ROM)是没有经过优化设计,而是直接将波形的采样数据放入ROM,这样会占用很大的空间,而硬件资源是有限的。
3.1 基于流水线结构的累加器设计
相位累加器是DDS的关键部件之一,它的运算速度直接影响DDS的运算速度。为了改进传统DDS结构因频率控制字位数多而带来的计算速度问题,采用DSP芯片设计中的流水线结构,并在每级流水线中设计了反馈电路,形成了累加流水线工作状态。将32位频率控制字的相位累加器采用4级流水线结构实现,每级8位,原理如图2所示。
32位流水线累加器共4级锁存,4级加法。第1级锁存用于存储并稳定32位输入数据,中间每一级8位加法器均搭配一级寄存器,这样可以减少毛刺。由流水线的原理可知,该累加器的整体速度取决于8位加法器。这样整体计算速度比传统的速度就提高了3倍。
由于QUARTUSⅡ软件中提供了参数化的宏功能模块库(LPM),通过改变LPM中模块的某些参数,可以达到设计的要求,所以LPM是提高电路设计的一种有效方法。本设计中,相位累加器的各级加法器均调用参数化模块库中的LPM_ADD_SUB模块,形成四级流水线工作状态,并在每一级流水线中插入几个寄存器来提高系统的数据吞吐率。
3.2 ROM查找表的优化设计
根据波形的对称性,可以对采样波形数据的存储进行优化,以便节省ROM空间。以正弦波为例,在区间内其波形是关于π/2对称的,因此其区间内的波形可以通过对的波形关于π/2进行翻转得到;同理区间内的波形可以通过对的波形关于横轴翻转得到。所以实际上ROM只需要存储内的正弦函数值,通(下转第133页)(上接第108页)过适当控制即可实现输出一个完整周期的正弦函数值,从而大大减小存储器的大小。优化的ROM结构框图如图3所示。
首先将相位寄存器输出的高M位总地址分为3部分:最高位作为数据的符号位,实现对数据正负的转换,次高位作为地址的标志位,实现对ROM地址的转换。而剩下的低M—2位通过地址转换器后作为ROM地址位。如果将最高位和次高位合并起来看,它们实质上是构成一个象限选择器,其值从00至11分别代表第1、2、3、4象限。这样只需传统的DDS结构的1/4的存储空间。
用QUARTUSⅡ软件中提供了参数化的宏功能模块库(LPM)来设计,lpm_rom的波形存储表只需要产生数据文件*.mif,然后直接在定制lpm_rom时,添加数据文件即可,但这种方法在FPGA支持内部嵌入式阵列块(EAB)时才可以使用。mif文件是在编译和仿真过程中作为存储器(ROM)初始化输入的文件,有多种方式可以创建mif文件。
4.仿真验证
通过FPGA的开发软件Quartus II,将编译综合后的DDS设计文件用软件自带的仿真器进行仿真,仿真波形如图4所示,通过仿真波形验证了设计是正确的。利用Quartus II自带嵌入式逻辑分析仪Signal Tap II采集ROM输出的数据所形成的波形,如图5所示。从输出波形可以验证设计的正确性。
5.结束语
本文通过构建流水线结构的相位累加器和波形存储表ROM的优化设计,改善了DDS传统机构的所存在的两个主要问题。设计调用QUARTUSⅡ软件中提供了参数化的宏功能模块库(LPM),对设计过程进行了详细的描述,并仿真验证了优化设计的正确性。经实验测试,在QUARTUS II环境下选取同一种器件,采用优化后的DDS设计方法,不仅提高了工作频,而且大大节省了资源。
参考文献
刘凌,胡永生译.数字信号处理的FPGA实现.北京:清华大学出版社,,5.
陈**,冒燕,李海鸿.基于FPGA的世界数字频率合成器设计.微计算机信息,,22(5):197—199.
邹彦,庄严等.EDA技术与数字系统设计.北京:电子工业出版社,,4.
潘松,王国栋.VHDL实用教程.成都:电子科技大学出版社,,3.
篇2:基于FPGA的直接数字频率合成器的设计和实现
基于FPGA的直接数字频率合成器的设计和实现
摘要:介绍了利用Altera的FPGA器件(ACEX EP1K50)实现直接数字频率合成器的工作原理、设计思想、电路结构和改进优化方法。关键词:直接数字频率合成(DDS) 现场可编程门阵列(FPGA)
直接数字频率合成(Direct Digital Fraquency Synthesis,即DDFS,一般简称DDS)是从相位概念出发直接合成所需要波形的一种新的频率合成技术。
目前各大芯片制造厂商都相继推出采用先进CMOS工艺生产的高性能和多功能的DDS芯片(其中应用较为广泛的是AD公司的AD985X系列),为电路设计者提供了多种选择。然而在某些场合,专用的DDS芯片在控制方式、置频速率等方面与系统的要求差距很大,这时如果用高性能的FPGA器件设计符合自己需要的DDS电路就是一个很好的解决方法。
ACEX 1K是Altera公司着眼于通信、音频处理及类似场合的应用而推出的FPGA器件芯片系列,总的来看将会逐步取代FLEX 10K系列,成为首选的中规模器件产品。它具有如下特点:
(1)ACEX 1K采用查找表(LUT)和EAB(嵌入式阵列块)相结合的结构,特别适用于实现复杂逻辑功能存储器功能,例如通信中应用的数字信号处理、多通道数据处理、数据传递和微控制等。
(2)典型门数为1万到10万门,有多达49152位的RAM(每个EAB有4096位RAM)。
(3)器件内核采用2.5V电压,功耗低,能够提供高达250MHz的双向I/O功能,完全支持33MHz和66MHz的PCI局部总线标准。
(4)具有快速连续式延时可预测的快速通道互连(Fast Track);具有实现快速加法器、计数器、乘法器和比较器等算术功能的专用进位链和实现高速多扇入逻辑功能的专用级连接。
ACEX EP1K50具有典型门数50000门,逻辑单元2880个,嵌入系统块10个,完全符合单片实现DDS电路的要求。因此采用它设计DDS电路,设计工具为Altera的下一代设计工具Quartus软件。
(本网网收集整理)
1 DDS电路工作原理
图1所示是一个基于的DDS电路的工作原理框图。
DDS的工作原理是以数控振荡器的方式产生频率、相位可控制的正弦波。电路一般包括基准时钟、频率累加器、相位累加器、幅度/相位转换电路、D/A转换器和低通滤波器(LPF)。频率累加器对输入信号进行累加运算,产生频率控制数据X(frequency data或相位步进量)。相位累加器由N位全加器和N位累加寄存器级联而成,对代表频率的2进制码进行累加运算,是典型的反馈电路,产生累加结果Y。幅度/相位转换电路实质上是一个波形寄存器,以供查表使用。读出的数据送入D/A转换器和低通滤波器。
具体工作过程如下:
每来一个时钟脉冲Fclk,N位加法器将频率控制数据X与累加寄存器输出的'累加相位数据相加,把相加后的结果Y送至累加寄存器的输入端。累加寄存器一方面将在上一时钟周期作用后所产生的新的相位数据反馈到加法器的输入端,以使加法器在下一时钟的作用下继续与频率控制数据X相加;另一方面将这个值作为取样地址值送入幅度/相位转换电路(即图1中的波形存储器),幅度/相位转换电路根据这个地址输出相应的波形数据。最后经D/A转换器和低通滤波器将波形数据转换成所需要的模拟波形。
相位累加器在基准时钟的作用下,进行线性相位累加,当相位累加器加满量时就会产生一次溢出,这样就完成了一个周期,这个周期也就是DDS信号的一频率周期。
DDS输出信号的频率由下式给定:
Fout=(X/Y) ×Fclk
假定基准时钟为70MHz,累加器为16位,则Y=2 16=65536
Fclk=70MHz
再假定X=4096,则
Fout=(4096/65536) ×70=4.375MHz
可见,通过设定相位累加器位数、频率控制字X和基准时钟的值,就可以产生任一频率的输出。DDS的频率分辨率定义为:
Fout=Fclk/Y (2)
由于基准时钟一般固定,因此相位累加器的位数就决定了频率分辨率。如上面的例子,相位累加器为16位,那么频率分辨率就可以认为是16位。位数越多,分频率越高。
2 利用FPGA设计DDS电路
在用FPGA设计DDS电路
的时候,相位累加器是决定DDS电路性能的一个关键部分,小的累加器可以利用ACEX器件的进位链得到快速、高效的电路结构。然而由于进位链必须位于临近的LAB(逻辑阵列块)和LE(逻辑单元)内,因此长的进位链势必会减少其它逻辑使用的布线资源,同时过长的进位链也会制约整个系统速度的提高。
另一种提高速度的办法是采用流水线技术,即把在一个时钟内要完成的逻辑操作分成几步较小的操作,并插入几个时钟周期来提高系统的数据吞吐率。但是流水线技术比较适合开环结构的电路,要用在累加器这样的闭环反馈的电路中必须谨慎考虑,以保证设计的准确无误。
综合考虑后,相位累加器采用进位链和流水线技术相结合的办法来证明,这样既能保证较高的资源利用率,又能大幅提高系统的性有和速度。
相位/幅度转换电路是DDS电路中的另一个关键部分,设计中面临的主要问题就是资源的开销。该电路通常采用ROM结构,相位累加器的输出是一种数字式锯齿波,通过取它的若干位作为ROM的地址输入,而后通过查表和运算,ROM就能输出所需波形的量化数据。
在FPGA(针对Altera公司的器件)中,ROM一般由EAB实现,并且ROM表的尺寸随着地址位数或数据位数的增加成指数递增关系,因此在满足信号性能的前提条件下,如何减少资源的开销就是一个重要的问题。在实际设计时我们充分利用了信号周期内的对称性和算术关系来减少EAB的开销。
在实际设计中,根据项目具体要求,还设计了一个系统控制电路。
综合以上考虑,整个DDS电路的电路结构如图2所示。
采用Verilog硬件描述语言实现整个电路,不仅利于设计文档的管理,而且方便设计的修改和扩充,还可以在不同FPGA器件之间实现移植。
由图2可以清楚地看出,整个系统只加入了一级流水线来提高速度。需要说明的是,在ROM和系统控制电路之间也可以加入流水线,但实际仿真表明效果不明显,反而消耗了更多的资源,因此综合考虑后只加入一级流水线。
为了进步提高速度,在设计相位累加器模块和加法器模块时并没有采用FPGA单元库中16~32位加法器,尽管它们可以很容易地实现高达32位的相位累加器,但当工作频率较高时,它们较大的延时不能满足速度要求,故不可取。因此,具体实现时我们分别用了4个和8位4位的累加器以流水线的方式实现16位和32位累加器和加法器。比较仿真结果表明采用流水线技术可以大大提高系统的工作速度。
由前面分析可知,相位/幅度变换电路是比较难实现的电路,不仅要解决速度的问题,还要考虑节省资源的问题。如果有效利用FPGA的有限资源,是实现相位/幅度变换电路的最关键的一点。
在实际运用中,我们将着眼点主要放在了节省资源上,相位/幅度转换电路中的主要问题在于ROM的大小。由于设计的DDS电路主要用于数字视频编码中,只需要输出余弦(正弦)波,故考虑了以下的优化方式:余弦波信号对于x=π直线成偶对称,基于此可以将ROM表减至原来的1/2,再利用左半周期内,波形对于点(π/2,0)成奇对称,进一步将ROM表减至最初的1/4,因此通过一个正弦码表的前1/4周期就可以变换得到的正弦和余弦的整个周期码表。这样就节省了将近3/4的资源,非常可观。
系统控制电路主要是根据是否需要相位调制(BPSK)及频率调制(BFSK),系统时钟是否需要分频得到所需的基准时钟,频率码的输入方式是串行、并行还是微机接口方式,如何控制输出等具体要求而设计的。这一电路可以灵活设计,凸现FPGA的优点所在。
3 利用ACEX EP1K50实现的DDS电路和专用DDS芯片的比较
(1)系统速率:用ACEX EP1K50实现DDS电路,16位精度(分辨率)的DDS电路最高频率达到148MHz,32位精度(分辨率)的电路最高工作频率为107MHz,可以看出这个频率已经是比较高了;而采用专用DDS芯片,频率可在数十至数百兆赫兹之间,如AD9850为125MHz,AD9851为180MHz,比较新的AD9854已经达到300MHz。用FPGA实现的DDS电路能工作在如此之高的频率主要依赖于ACEX EP1K50器件先进的结构特点,以及前面提出的多种优化措施。
(2)可控性:虽然有的专用DDS芯片的功能也比较多,但控制方式却是固定的,因此不一定是我们所需要的。而利用ACEX EP1K50器件则可以根据需要方便地实现各种比较复杂的调频、调相和调幅功能,具有良好的实用性。
(3)信号质量:专用DDS芯片由于采用特定的集成工艺,内部数字信号抖动很小,可以输出高质量的模拟信号;利用ACEX EP1K50器件也能输出较高质量的信号,虽然达不到专用DDS芯片的水平,但信号精度误差在允许范围之内。
(4)成本:专用DDS芯片价格较高,而将用FPGA器件设计的DDS电路嵌入到系统中并不会使成本增加多少。
利用Altera公司的ACEX EP1K50器件,通过各种优化措施,设计开发的DDS电路,达到了预期的目的,具有较高的性价化。
篇3:实现直接数字频率合成器的三种技术方案
实现直接数字频率合成器的三种技术方案
摘要:讨论了DDS的工作原理及性能性点,介绍了目前实现DDS常用的三种技术方案,并对各方案的特点作了简单的说明。关键词:直接数字频率合成器相位累加器信号源现场可编程门限列
1971年,美国学者J.Tierney等人撰写的“ADigitalFrequencySynthesizer”-文首次提出了以全数字技术,从相位概念出发直接合成所需波形的一种新给成原理。限于当时的技术和器件产,它的性牟指标尚不能与已有的技术盯比,故未受到重视。近1年间,随着微电子技术的迅速发展,直接数字频率合成器(DirectDigitalFrequencySynthesis简称DDS或DDFS)得到了飞速的发展,它以有别于其它频率合成方法的优越性能和特点成为现代频率合成技术中的姣姣者。具体体现在相对带宽宽、频率转换时间短、频率分辨率高、输出相位连续、可产生宽带正交信号及其他多种调制信号、可编程和全数字化、控制灵活方便等方面,并具有极高的性价比。
1DDS基本原理及性能特点
DDS的基本大批量是利用采样定量,通过查表法产生波形。DDS的结构有很多种,其基本的电路原理可用图1来表示。
相位累加器由N位加法器与N位累加寄存器级联构成。每来一个时钟脉冲fs,加法器将控制字k与累加寄存器输出的累加相位数据相加,把相加后的结果送到累加寄存器的数据输入端,以使加法器在下一个时钟脉冲的作用下继续与频率控制字相加。这样,相位累加器在时钟作用下,不断对频率控制字进行线性相位加累加。由此可以看出,相位累加器在每一个中输入时,把频率控制字累加一次,相位累加器输出的数据就是合成信号的相位,相位累加器的出频率就是DDS输出的信号频率。
用相位累加器输出的数据作为波形存储器(ROM)的相位取样地址。这样就可把存储在波形存储器内的波形抽样值(二进制编码)经查找表查出,完成相位到幅值转换。波形存储器的输出送到D/A转换器,D/A转换器将数字量形式的波形幅值转换成所要求合成频率的模拟量形式信号。低通滤波器用于滤除不需要的取样分量,以便输出频谱纯净的正弦波信号。
DDS在相对带宽、频率转换时间、高分头放力、相位连续性、正交输出以及集成化等一系列性能指标方面远远超过了传统频率合成技术所能达到的水平,为系统提供了优于模拟信号源的性能。
(1)输出频率相对带宽较宽
输出频率带宽为50%fs(理论值)。但考虑到低通滤波器的特性和设计难度以及对输出信号杂散的抑制,实际的输出频率带宽仍能达到40%fs。
(2)频率转换时间短
DDS是一个开环系统,无任何反馈环节,这种结构使得DDS的频率转换时间极短。事实上,在DDS的频率控制字改变之后,需经过一个时钟周期之后按照新的相位增量累加,才能实现频率的转换。因此,频率时间等于频率控制字的传输,也就是一个时钟周期的时间。时钟频率越高,转换时间越短。DDS的频率转换时间可达纳秒数量级,比使用其它的频率合成方法都要短数个数量级。
(3)频率分辨率极高
若时钟fs的频率不变,DDS的频率分辨率就是则相位累加器的位数N决定。只要增加相位累加器的位数N即可获得任意小的频率分辨率。目前,大多数DDS的分辨率在1Hz数量级,许多小于1mHz甚至更小。
(4)相位变化连续
改变DDS输出频率,实际上改变的每一个时钟周期的相位增量,相位函数的曲线是连续的,只是在改变频率的瞬间其频率发生了突变,因而保持了信号相位的连续性。
(5)输出波形的灵活性
只要在DDS内部加上相应控制如调频控制FM、调相控制PM和调幅控制AM,即可以方便灵活地实现调频、调相和调幅功能,产生FSK、PSK、ASK和MSK等信号。另外,只要在DDS的波形存储器存放不同波形数据,就可以实现各种波形输出,如三角波、锯齿波和矩形波甚至是任意的波形。当DDS的波形存储器分别存放正弦和余弦函数表时,既可得到正交的两路输出。
(6)其他优点
由于DDS中几乎所有部件都属于数字电路,易于集成,功耗低、体积小、重量轻、可靠性高,且易于程控,使用相当灵活,因此性价比极高。
DDS也有局限性,主要表现在:
(1)输出频带范围有限
由于DDS内部DAC和波形存储器(ROM)的工作速度限制,使得DDS输出的最高频有限。目前市场上采用CMOS、TTL、ECL工艺制作的DDS工习片,工作频率一般在几十MHz至400MHz左右。采用GaAs工艺的DDS芯片工作频率可达2GHz左右。
(2)输出杂散大
由于DDS采用全数字结构,不可避免地引入了杂散。其来源主要有三个:相位累加器相位舍位误差造成的杂散;幅度量化误差(由存储器有限字长引起)造成的杂散和DAC非理想特性造成的杂散。
2实现DDS的三种技术方案
2.1采用高性能DDS单片电路的解决方案
随着微电子技术的飞速发展,目前高超性能优良的DDS产品不断推出,主要有Qualcomm、AD、Sciteg和Stanford等公司单片电路(monolithic)。Qualcomm公司推出了DDS系列Q2220、Q2230、Q2334、Q2240、Q2368,其中Q2368的时钟频率为130MHz,分辨率为0.03Hz,杂散控制为-76dBc,变频时间为0.1μs;美国AD公司也相继推出了他们的DDS系列:AD9850、AD9851、可以实现线性调频的AD9852、两路正交输出的AD9854以及以DDS为核心的QPSK调制器AD9853、数字上变频器AD9856和AD9857.AD公司的DDS系列产品以其较高的性能价格比,目前取得了极为广泛的应用。AD公司的常用DDS芯片选用列表见表1.下面仅对比较常用的AD9850芯片作一简单介绍。
表1AD公司的常用DDS芯片选用列表
型号最大工作(MHz)工作电压(V)最大功耗(mw)备注AD9832253.3/5120小型封装,串行输入,内置D/A转换器。AD9831253.3/5120低电压,经济,内置D/A转换器。AD9833252.5~5.5个管脚的uSOIC封装。AD9834502.5~5.52520个管脚的TSSOP封装并内置比较器。AD9835505200经济,小型封装,串行输入,内置D/A转换器。AD9830505300经济,并行输入,内置D/A转换器。AD98501253.3/5480内置比较器和D/A转换器。AD98531653.3/51150可编程数字QPSK/16-QAM调制器。AD98511803/3.3/5650内置比较器、D/A转换器和时钟6倍频器。AD98523003.31200内置12位的D/A转换器、高速比较器、线性调频和可编程参考时钟倍频器。AD98543003.31200内置12位两路正交D/A转换器、高速比较器和可编程参考时钟倍频器。AD985810003.3内置10位的D/A转换器、150MHz相频检测器、充电汞和2GHz混频器。
AD9850是AD公司采用先进的DDS技术推出的高集成度DDS频率合成器,它内部包括可编程DDS系统、高性能DAC及高速比较器,能实现全数字编程控制的频率合成器和时钟发生器。接上精密时钟源,AD9850可产生一个频谱纯净、频率和相位都可编程控制的模拟正弦波输出。此正弦波可直接用作频率信号源或转换成方波用作时钟输出。AD9850接口控制简单,可以用8位并行口或串行口经、相位等控制数据。32位频率控制字,在125MHz时钟下,输出频率分产率达0.029Hz。先进的`CMOS工艺使AD9850不仅性能指标一流,而且功耗少,在3.3V供电时,功耗仅为155mW。扩展工业级温度范围为-40~+85摄氏度,其封装是28引脚的SSOP表面封装。
AD9850采用32位相位累加器,截断成14位,输入正弦查询表,查询表输出截断成10位,输入到DAC。DAC输出两个互补的模拟电流,接到滤波器上。调节DAC满量程输出电流,需外接一个电阻Rset,其调节关系是Iset=32(1.248V/Rset),满量程电流为10~20mA。
2.2采用低频正弦波DDS单片电路的解决方案
MicroLinear公司的电源管理事业部推出低频正弦波DDS单片电路ML2035以其价格低廉、使用简单得到广泛应用。ML2035特性:(1)输出频率为直流到25kHz,在时钟输入为12.352MHz野外频率分辨率可达到1.5Hz(-0.75~+0.75Hz),输出正弦波信号的峰-峰值为Vcc;(2)高度集成化,无需或仅需极少的外接元件支持,自带3~12MHz晶体振荡电路;(3)兼容的3线SPI串行输入口,带双缓冲,能方便地配合单片机使用;(4)增益误差和总谐波失真很低。
ML2035为DIP-8封装,各引脚功能如下:
(1)Vss:-5V电源;
(2)SCK:串行时钟输入,在上升沿将串行数据锁入16位移位寄存器;
(3)SID:串行数据输入,该串行数据为频率控制字,决定6脚输出的频率;
(4)LATI:串行数据锁存,在下降沿将频率控制字锁入16位数据锁存器;
(5)Vcc:+5电源;
(6)Vout:模拟信号输出;
(7)GND:公共地,输入、输出均以此点作为参考点;
(8)CLKIN:时钟输入,可外接时钟或石英晶体。
ML2035生成的频率较低(0~25kHz),一般应用于一些需产生的频率为工频和音频的场合。如用2片ML2035产生多频互控信号,并与AMS3104(多频接收芯片)或ML2031/2032(音频检波器)配合,制作通信系统中的收发电路等。
可编程正弦波发生器芯片ML2035设计巧妙,具有可编程、使用方便、价格低廉等优点,应用范围广泛。很适合需要低成本、高可靠性的低频正弦波信号的场合。
ML2037是新一代低频正弦波DDS单片电路,生成的最高频可达500kHz。
2.3自行设计的基于FPGA芯片的解决方案
DDS技术的实现依赖于高速、高性能的数字器件。可编程逻辑器件以其速度高、规模在、可编程,以及有强大EDA软件支持等特性,十分适合实现DDS技术。Altera是著名的PLD生产厂商,多年来一直占据着行业领先的地位。Altera的PLD具有高性能、高集成度和高性价比的优点,此外它还提供了功能全面的开发工具和丰富的IP核、宏功能外它还提供了功能全面的开发工具和丰富的IP核、宏功能库等,因此Altera的产品获得了广泛的应用。Altera的产品有多个系列,按照推出的先后顺序依次为Classic系列、MAX(MultipleArrayMatrix)系列、FLEX(FlexibleLogicElementMatrix)系列、APEX(AdvancedLogicElementMatrix)系列、ACEX系列、Stratix系列以及Cyclone等。
Max+plusII是Altera提供的一个完整的EDA开发软件,可完成从设备输入、编译、逻辑综合、器件适配、设计仿真、定时分析、器件编程的所有过程。QuartusII是Altera近几年来推出的新一代可编程逻辑器件设计环境,其功能更为强大。
用Max+plusII设计DDS系统数字部分最简单的方法是采用原理图输入。相位累加器调用lmp_add_sub加减法器模拟,相位累加器的好坏将直接影响到整个系统的速度,采用流水线技术能大幅度地提升速度。波形存储器(ROM)通过调用lpm_rom元件实现,其LPM_FILE的值*.mif是一个存放波形幅值的文件。波形存储器设计主要考虑的问题是其容量的大小,利用波形幅值的奇、偶对称特性,可以节省3/4的资源,这是非常可观的。为了进一步优化速度的设计,可以选择菜单Assign|GlobanProjectLogicSynthesis的选项Optimize10(速度),并设定GlobalProjectLogicSynthesisStyle为FAST,经寄存器性能分析最高频率达到100MHz以上。用FPGA实现的DDS能工用在如此之高的频率主要依赖于FPGA先进的结构特点。
虽然有的专用DDS芯片的功能也比较多,但控制方式却是固定的,因此不一定是我们所需要的。而利用FPGA则可以根据需要方便地实现各种比较复杂的调频、调相和调幅功能,具有良好的实用性。就可成信号质量而言,专用DDS芯片由于采用特定的集成工艺,内部数字信号抖动很小,可以输出高质量的模拟信号;利用FPGA也能输出较高质量的信号,虽然达不到专用DDS芯片的水平,但信号精度误差在允许范围之内。
DDS问世之初,构成DDS元器件的速度的限制和数字化引起的噪声这两个主要缺点阻碍了DDS的发展与实际应用。近几年超高速数字电路的发展以及对DDS的深入研究,DDS的最高工作频率以及噪声性能已接近并达到锁相频率合成器相当的水平。随着这种频率合成技术的发展,现已广泛应用于通讯、导航、雷达、遥控遥测、电子对抗以及现代化的仪器仪表工业等领域。
篇4:实现直接数字频率合成器的三种技术方案
实现直接数字频率合成器的三种技术方案
摘要:讨论了DDS的工作原理及性能性点,介绍了目前实现DDS常用的三种技术方案,并对各方案的特点作了简单的说明。关键词:直接数字频率合成器 相位累加器 信号源 现场可编程门限列
1971年,美国学者J.Tierney等人撰写的“A Digital Frequency Synthesizer”-文首次提出了以全数字技术,从相位概念出发直接合成所需波形的一种新给 成原理。限于当时的技术和器件产,它的性牟指标尚不能与已有的技术盯比,故未受到重视。近1年间,随着微电子技术的迅速发展,直接数字频率合成器(Direct Digital Frequency Synthesis简称DDS或DDFS)得到了飞速的发展,它以有别于其它频率合成方法的优越性能和特点成为现代频率合成技术中的姣姣者。具体体现在相对带宽宽、频率转换时间短、频率分辨率高、输出相位连续、可产生宽带正交信号及其他多种调制信号、可编程和全数字化、控制灵活方便等方面,并具有极高的性价比。
1 DDS基本原理及性能特点
DDS的基本大批量是利用采样定量,通过查表法产生波形。DDS的结构有很多种,其基本的电路原理可用图1来表示。
相位累加器由N位加法器与N位累加寄存器级联构成。每来一个时钟脉冲fs,加法器将控制字k与累加寄存器输出的累加相位数据相加,把相加后的结果送到累加寄存器的数据输入端,以使加法器在下一个时钟脉冲的作用下继续与频率控制字相加。这样,相位累加器在时钟作用下,不断对频率控制字进行线性相位加累加。由此可以看出,相位累加器在每一个中输入时,把频率控制字累加一次,相位累加器输出的数据就是合成信号的相位,相位累加器的出频率就是DDS输出的信号频率。
用相位累加器输出的数据作为波形存储器(ROM)的相位取样地址。这样就可把存储在波形存储器内的`波形抽样值(二进制编码)经查找表查出,完成相位到幅值转换。波形存储器的输出送到D/A转换器,D/A转换器将数字量形式的波形幅值转换成所要求合成频率的模拟量形式信号。低通滤波器用于滤除不需要的取样分量,以便输出频谱纯净的正弦波信号。
DDS在相对带宽、频率转换时间、高分头放力、相位连续性、正交输出以及集成化等一系列性能指标方面远远超过了传统频率合成技术所能达到的水平,为系统提供了优于模拟信号源的性能。
(1)输出频率相对带宽较宽
输出频率带宽为50%fs(理论值)。但考虑到低通滤波器的特性和设计难度以及对输出信号杂散的抑制,实际的输出频率带宽仍能达到
[1] [2] [3] [4] [5] [6]
【基于FGA的直接数字频率合成器的优化设计论文】相关文章:
4.优化教学设计
5.网店优化论文






文档为doc格式