欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>风力发电机科技的论文

风力发电机科技的论文

2022-09-22 08:16:43 收藏本文 下载本文

“yn7758258”通过精心收集,向本站投稿了16篇风力发电机科技的论文,这次小编给大家整理后的风力发电机科技的论文,供大家阅读参考,也相信能帮助到您。

风力发电机科技的论文

篇1:风力发电机科技的论文

风力发电机科技的论文

摘 要:利用风能来发电是新能源应用的一种主要形式。就风力发电过程中涉及的控制技术进行阐述,分析该技术存在的三个主要问题及发展趋势,提出解决相关问题的关键技术。

关键词:风力发电 机械控制 电路控制

中图分类号:TM614 文献标识码:A 文章编号:1007-3973012-171-02

风能资源的开发利用这项技术,从最早的单机组运行到现在的全国连网并列运行,相应的发电机组的容量也从开始的数十千瓦级发展到海上风电场的兆瓦级;对机组的机械控制方式从定桨距失速控制到变桨距运行,电力电子控制从恒速恒频发展到现在双馈异步等形式的变速恒频。风力发电技术在能源开发利用方面要想有更好的发展前景,和火力水利等传统发电技术相抗衡,关键还是要解决控制问题。而控制问题区别于其它形式发电技术的关键还是风力发电输入风能不稳定,而要求输出电能频率要求稳定的问题。解决问题主要可以从以下三个方面考虑:

(1)风力发电由于风速变化大,输入风能不稳定,风力机转速不好控制,风力发电机的输入部分存在技术开发的空间,即从机械方面考虑改进措施,进行机械控制。

风力发电的机型按照并网时速度是否改变主要分为两种,恒速恒频型机组和变速恒频型机组。不论哪种机型,目前风力发电机的叶轮都采用水平轴、三叶片,上风向布置;额定转速约27r/min。风能通过风力机转换成为动能,风力机通过转轴驱动后面联动的风力发电机。从而实现风能-机械能-电能的转换。

风力机的风轮一般采用三桨叶与轮毂刚性相连的结构,即定桨距风轮。主要是因为三叶片具有平衡和美观等优良性能。为了实现对其很好的控制,一般在桨叶尖部1.5~2.5m处,设计成可调控的叶尖扰流器,叶尖扰流器起气动刹车的作用。当风速过大时,叶尖扰流器释放并旋转形成阻尼板,影响风能在叶片上的受力分布,改变风力机转轴的转速。特别当风力发电机组需要脱网停机时,它可以用作机械制动,效果特别明显。

风力发电机组从定桨距发展到变桨距经历了很长一段时间。早期的定桨距具有以下性能优点:采用软并网技术、空气动力刹车技术、偏航与自动解缆技术,使风力发电机组的并网问题和运行的安全性与可靠性大大提高。但是,由于叶片的安装角在装配时已经固定,其功率输出是由桨叶自身的性能来调节的,因此,在允许的风速范围内,定桨距风力发电机组的控制系统在运行过程中对由于风速变化引起输出能量的变化是无能为力的。这就大大降低了风能利用效率,使得定桨距风力发电机组的推广得到限制。

针对上述特点,大型风力发电机组,特别是兆瓦级机组(1000kw以上)的风力发电机组在设计,叶片采用变桨距连接,即叶片与轮毂中间采用可转动的推力轴承或专门为变距机构设计的回转支撑联接,变桨距风力发电机的叶片较薄,结构相对简单,重量小很多,使得变桨距风力发电机风轮转动惯量小,设计容易,易于制造大型风力发电机组。这样风力机可根据风速的变化适时调整叶片连接角度,改善叶片周围的流场分布,即使风速不在额定风速的工况下,机组的输出功率也可以保持在额定功率上。特别是在大风情况下,风力机可以使叶片顺桨,保证整个机组风能利用大大提高。

现在,大型风力发电机组一般都采用变桨距的结构形式。这样可以在起动时对转速进行控制,并网后可对功率进行控制,使风力机的起动性能和功率输出特性都有显著和改善。机组的液压系统作为变距系统执行机构的一部分,在整个闭环控制系统中占有很大作用,大大提高了发电系统的运行自动化程度。

(2)风力机转轴带动风力发电机转轴旋转。风力机在风力的推动下旋转,由于输入风能时刻在改变,不稳定,而且风力机在风能向机械能转换过程中存在转换效率问题,再加上受到设计制造的局限,风力机的转速不能很高,但是传统发电机转速相对要求高,所以连接部分―风力发电机需要进行技术方面的改进。

由于风力发电机组体积庞大,重量达到几吨到几十吨,工作时具有很大的转动惯量;另一方面,受到风力发电机制造技术和叶片材料的约束,风轮的转速不能太高,一般运行在20~30r/min。机组容量越大,转速越低。为了在此基础上发电机得到更多的动能输入,需要设置增速齿轮箱。齿轮布置时采用沿轴线分布的结构特点。但是由于增加了庞大的机械设备,齿轮间存在高速运行易磨损的问题,使风力发电机组发生故障的可能性提高了,现在直驱式风力发电机组(即机组连接部分不用增速齿轮箱)正在慢慢受到设计者的青睐。

风力发电机组中的发电机一般采用异步发电机,异步发电机的'转速取决于电网的频率,只能在同步转速附近很小的范围内变化。对于定桨距风力发电机组,一般还采用高滑差异步发电机和变速恒频的双馈异步发电机。这样可以使机组的运行风况范围大大增加即虽然风速远离额定值,但是发电机的效率不会降低,风能利用系数得到提高的同时,发电机组的噪声降低。发出电能的频率也会符合电网要求。

现在,大型风电场一般都采用变速风力发电机组。它的关键技术在于采用了绕线型异步发电机(其转速可以有很大的变化)或同步电机,再在输出电能的电路中增加相应的变频技术。同步发电机的并网一般有两种方式:一种是准同期直接并网,这种方法在大型风力发电中极少采用;另一种是交-直-交并网。控制技术主要任务是对最佳叶尖速比的测量监控,使得机组在允许风速的任何情况下都可以获得理想的功率输出。

(3)如果直接用风力机带动发电机转子旋转,即直驱式风力发电机,输出电能频率与电网频率存在衔接问题,即从电力电子方面考虑改进措施,进行电路控制。

风力发电机组发出的电能频率可以不为50HZ,但是经过变频电路处理,使电能质量达到并网要求,稳定可靠得给电网提供电能。

控制技术和监测技术是风力发电系统的关键技术。因为风能不稳定,风速大小和方向随着季节和气候的改变而改变,风力资源丰富的地区通常都是海岛或边远地区甚至海上,风力发电机组一般安装在无人值守区,占地面积较大。所以对输入功率的限制、风轮的主动对风以及对运行过程中故障的检测和维护必须实行自动化控制。分散布置的风力发电机组通常要求远程监控,自动控制应该实施运行人员设置的控制策略,保证机组安全可靠地运行。

风力发电技术未来的发展趋势将是全实现整个电力系统的自动化,在风电场运行的风力发电机组全部可以实现中央集中控制和远程控制。火力水利等发电系统的控制系统,主要的任务是监视电网、机组运行参数,对机组进行并网与脱网控制,以确保运行过程的安全性与可靠性,而风力发电系统则在此基础上,还要增加一些传感器检测技术,时刻监测风速风向。根据对其变化趋势的分析,做出判断,提高系统的经济性和稳定性。

总之,随着技术的不断改进,基于变桨距技术的各种变速风力发电机组已经在风电市场得到推广。变速风力发电机组的优点在不断显示出来。变速风力发电机组的可以在低于额定风速时,跟踪最佳功率曲线,使风力发电机组具有最高的风能转换效率;在高于额定风速时,增加传动系统的柔性,稳定输出功率,向电网提供安全可靠经济的电能。

参考文献:

[1] 宋海辉.风力发电技术及工程[M].北京:中国水利水电出版社,.

[2] 王承熙,张源.风力发电[M].北京:中国电力出版社,.

篇2:风力发电机设计

专业班级 09级机电一体化工程

姓名

指导教师姓名、职称 高级工程师

所属助学单位

4月1 日

目 录

1 绪论…………………………………………………………………………………1

1.1 风力发电机简介 ………………………………………………………………1

1.2 风力发电机的发展史简介 ……………………………………………………1

1.3 我国现阶段风电技术发展状况 ………………………………………………2

1.4 我国现阶段风电技术发展前景和未来发展 …………………………………2 2 风力发电机结构设计………………………………………………………………3

2.1 单一风力发电机组成…………………………………………………………3

2.2 叶片数目………………………………………………………………………3

2.3 机舱……………………………………………………………………………4

2.4 转子叶片………………………………………………………………………5 3 风力发电机的回转体结构设计和参数计算 ……………………………………5

3.1联轴器的型号及主要参数………………………………………………………5

3.2 初步估计回转体危险轴颈的大小……………………………………………5

3.3 叶片扫描半径单元叶尖速比…………………………………………………6 4 风轮桨叶的结构设计………………………………………………………………6

4.1桨叶轴复位斜板设计……………………………………………………………6

4.2托架的基本结构设计……………………………………………………………6 5 风力发电机的其他元件的设计 …………………………………………………6

5.1 刹车装置的设计…………………………………………………………………6 6 风力发电机在设计中的3个关键技术问题………………………………………7

6.1空气动力学问题…………………………………………………………………7

6.2结构动力学问题…………………………………………………………………7

6.3控制技术问题……………………………………………………………………7 7 风力发电机的分类…………………………………………………………………7 8 风力发电机的选取标准……………………………………………………………8 9 风力发电机对风能以及其它的技术要求…………………………………………8

9.1风力发电机对风能技术要求……………………………………………………8

9.2风力发电机建模的技术是暂态稳定系统………………………………………9

9.3风力电动机技术之间的能量转换 ……………………………………………10 10 风力发电机在现实中的使用范例 ………………………………………………10 结论……………………………………………………………………………………12 致谢……………………………………………………………………………………13 参考文献………………………………………………………………………………14

摘 要

随着世界工业化进程不断加快,能源消耗不断增加,全球工业有害物质排放量与日俱增,造成了能源短缺和恶性疾病的多发,致使能源和环境成为当今世界两大问题。因此,风力发电的研究显得尤为重要。

我国风电场内无功补偿的方式是在风电场汇集站内装设集中无功补偿装置,这造成风电场无功补偿的投资很大。文章结合实例,通过对不同发电量下风电场的无功损耗和电压波动情况进行计算,提出利用风力发电机的无功功率可基本实现风电场的无功平衡,风电场母线电压的变化是无功补偿设备选型的依据,对于发电量变化引起的母线电压变化不超出电网要求的风电场,应利用风力发电机的无功功率减小汇集站内无功补偿装置的容量,降低无功补偿的投资。

关键词: 风力发电 、 风电场 、 无功补偿 、 电压波动

Abstract

As the world industrialization is accelerating and energy consumption increases unceasingly, increasing global industrial harmful substances emissions, caused energy shortage and malignant disease, cause the energy and environment are two major problems in the world today. Therefore, wind power research is particularly important. Wind reactive power compensation in China within the way the wind farm is installed inside concentrated collection station reactive power compensation devices, which caused wind farm reactive compensation investment greatly. Combined with examples, through different under the wind capacity of reactive power loss and voltage fluctuation situation, this paper puts forward the calculation of reactive power wind generator can realize the basic reactive power balance, the wind of change is busbar voltage wind power.at the reactive power compensation according to the selection of equipment for generating capacity of busbar voltage changes caused by the fluctuation of wind power requirements do not exceed the wind generator, should use the reactive power decrease in collection station reactive power compensation devices, reduce the capacity of the reactive power compensation investment.

Keywords: wind power 、wind farm 、reactive compensation 、voltage fluctuation

篇3:风力发电机设计

5.1 刹车装置的设计

由于机械维修以及意外情况的发生需要对风轮机进行刹车,所我们在增速器高速轴侧加装一轮毂并在轮毂外安置刹车装置通过拉拽钢丝绳带动刹车带使风轮转速降低直至停止。刹车带的复位由弹簧套筒内的弹簧来保证停止刹车后刹车皮与轮毂不在接触。

滑环是在一绝缘圆筒外壁镶嵌三到四个圆环并相应放置电刷电刷的另一端连接发电机的输出电线电缆,在绝缘圆筒内引线一直通到地面的变电所。

6风力发电机在设计中的3个关键技术问题

6.1空气动力学问题

空气动力设计是风力机设计技术的基础,它主要涉及下列问题:一是风场湍流模型,早期风力机设计采用简化风场模型,对风力机疲劳载荷和极端载荷的确定具有重要意义;另一是动态气动模型。再一是新系列翼型。

6.2结构动力学问题

准确的结构动力学分析是风力机向更大、更柔和结构更优方向发展的关键。

6.3控制技术问题

风力机组的控制系统是一个综合性的控制系统。随着风力机组由恒速定浆距

运行发展到变速变浆距运行,控制系统除了对机组进行并网、脱网和调向控制外,还要对机组进行转速和功率的控制,以保证机组安全和跟踪最佳运行功率2.5。 在横向力R的作用下底板链接接合面可能产生滑移,根据底板接合面不滑移条件,并考虑轴向力F∑对预紧力的影响,则各螺栓所需要的预紧力为:查得联结接合面间的摩擦系数f=0.35,查得螺栓的相对连接刚度系数 =0.2,取可靠性系数 =1.2 ,则各螺栓所需要的预紧力为f*1.2*0.2。螺栓所受的总拉力──六片桨叶、桨叶轴与圆盘整体自重作用在主轴上的力N 。弹性柱销联轴器制造容易,耐久性好,安装维护方便,传递转矩大。为防止脱销,柱销两端用螺栓固定了挡板。适用于轴向位移大,正、反转或启动频繁传动,因此选用弹性柱销联轴器。

篇4:风力发电机设计

1.绪 论

1.1风力发电机简介

自然界的风是可以利用的资源,然而,我们现在还没有很好的对它进行开发。这就向我们提出了一个课题:我们如何开发利用风能?

自然风的速度和方向是随机变化的,风能具有不确定特点,如何使风力发电机的输出功率稳定,是风力发电技术的一个重要课题。迄今为止,已提出了多种改善风力品质的方法,例如采用变转速控制技术,可以利用风轮的转动惯量平滑输出功率。由于变转速风力发电组采用的是电力电子装置,当它将电能输出输送给电网时,会产生变化的电力协波,并使功率因素恶化。

1.2 风力发电机的发展史简介

我国是最早使用风帆船和风车的国家之一,至少在30前的商代就出现了帆船,到唐代风帆船已广泛用于江河航运。最辉煌的风帆时代是明代,14世纪初叶中国航海家郑和七下西洋,庞大的风帆船队功不可没。明代以后风车得到了广泛的应用,我国沿海沿江的风帆船和用风力提水灌溉或制盐的做法,一直延续到20世纪50年代,仅在江苏沿海利用风力提水的设备增达20万台

随着蒸汽机的出现,以及煤、石油、天然气的大规模开采和廉价电力的获得,各种曾经被广泛使用的风力机械,由于成本高、效率低、使用不方便等,无法与蒸汽机、内燃机和电动机等相竞争,渐渐被淘汰。欧洲到中世纪才广泛利用风能,荷兰人发展了水平轴风车。18世纪荷兰曾用近万座风车排水,在低洼的海滩上造出良田,成为著名的风车之国。德国、丹麦、西班牙、英国、荷兰、瑞典、印度加拿大等国在风力发电技术的研究与应用上投入了相当大的人力及资金,充分综合利用空气动力学、新材料、新型电机、电力电子技术、计算机、自动控制及通信技术等方面的最新成果,开发建立了评估风力资源的测量及计算机模拟系统,发展了变浆距控制及失速控制的风力机设计理论,采用了新型风力机设计理论,采用了新型风力机叶片材料及叶片翼型,研制出了变极、变滑差、变速、恒频及低速永磁等新型发电机,开发了由微机控制的单台及多台风力发电机组成的机群的自动控制技术,从而大大提高了风力发电的效率及可靠性。到了19世纪末,开始利用风力发电,这在解决农村电气化方面显示了重要的作用,特别是20世纪70年代以后,利用风力发电更进入了一个蓬勃发展的阶段。

1.3 我国现阶段风电技术发展状况

中国现代风力发电机技术的开发利用起源于20世纪70年代初。经过初期发展、单机分散研制、系列化和标准化几个阶段的发展,无论在科学研究、设计制造,还是试验、示范、应用推广等方面均有了长足的进步和很大的提高,并取得了明显的经济效益和社会效益。

我国对风电已有部分优惠政策,包括以下几个方面。

1.风电配额: 制定出常规火电污染排放量分配比例,由全国所有省区共同分摊的政策。

2.风电上网电价: 落实风电高于火电的价差摊到全省的平均销售电价中。制定出按常规水电污染排放量分配比例,由全国所有省区共同分摊的政策。按地区具体情况定出风电最高上网电价的限制,并保持不变,促使业主充分利用资源,降低成本

3.售电增值税:发电增加了新的税源,建议参照小水电,核定风电销售环节增值税率为6%。

4.银行贷款: 为降低风电电价,减轻还贷压力,建议适当延长风电还贷期限,还贷期增至;为风电项目提供贴息贷款。

5.鼓励采用国产化风电机: 为采用国产化风电机的业主提供补贴和贴息贷款,补偿开发商的风险,帮助初期国产化机组进入市场,得到批量生产和改进产品的机会,以利降低成本。

风力等级是根据风对地面或海面物体影响而引起的各种现象,按风力的强度等级来估计风力的大小,国际上采用的是英国人蒲福(Francis Beaufort,1774~1859)于18所拟定的等级,故又称蒲福风级,他把静风到飓风分为13级。

1.4我国现阶段风电技术发展前景和未来发展

风能利用发展中的关键技术问题风能技术是一项涉及多个学科的综合技术。而且,风力机具有不同于通常机械系统的特性:动力源是具有很强随机性和不连续性的自然风,叶片经常运行在失速工况,传动系统的动力输入异常不规则,疲劳负载高于通常旋转机械几十倍[7]。对于这样的强随机性的综合系统。

篇5:风力发电机设计

根据定桨矩失速型风机和变速恒频变桨矩风机的特点,国内目前发电机一般分为二类:

1.异步型

(1)笼型异步发电机;功率为600/125kW 750kW 800kW 12500kW

定子向电网输送不同功率的50Hz交流电;

(2)绕线式双馈异步发电机;功率为1500kW

定子向电网输送50Hz交流电,转子由变频器控制,向电网间接输送 有功或无功功率。

2.同步型

(1)永磁同步发电机;功率为750kW 1200kW 1500kW 由永磁体产生磁场,定子输出经全功率整流逆变后向电网输送50Hz交流电

(2)电励磁同步发电机;由外接到转子上的直流电流产生磁场,定子输出经全功率整流逆变后向电网输送50Hz交流电

根据叶片形式的不同,现有风力发电机分为以下两类:

1.水平轴

世界上目前利用最多的形式,功率最大5MW左右。

2.垂直轴

21世纪初由中国、日本、欧洲几乎同时发明的一种新型风力发电机,有别于最早的垂直轴风力发电机(达里厄型),效率高于水平轴风力发电机,无噪音和转向机构,维护简单。已成为欧美市场中小型风力发电机的首选。世界上目前最大功率是由上海模斯电子设备有限公司(MUCE)生产的50千瓦垂直轴风力发电机,日本最大功率30千瓦,英美国家生产的功率在1千瓦到10千瓦之间。

最近,国内外多家公司提出了建造超大型垂直轴风力发电机的计划(10MW),此项计划得到落实后,由于成本远低于目前的风力发电机,必将逐步取代水平轴风力发电机,成为世界新能源的主力军!

8风力发电机的选取标准

1.根据机械

负载性质和生产工艺对发电机的启动、制动、反转、调速等要求,选择发电机的类型。

2.根据负载转矩、速度变化范围和启动频繁程度的要求

考虑发电机的温升限制、过载能力和启动转矩,选择发电机的功率,并确定冷却通风方式、所选电动机的功率应留有余量,负荷率一般取0.8 ,0.9。

3.根据使用场所的环境条件,

如温度、湿度、灰尘、雨水、瓦斯以及腐蚀和易燃易爆气体等考虑必要的保护方式,选择发电的结构形式。

4.根据企业的电网电压标准对功率因数的要求

确定发电的电压等级和类型。

5.根据生产进行的最高转速和对电力传动调速系统的过渡过程性能的要求

以及进行减速机构的复杂程度,选择发电机的额定功率

9风力发电机对风能以及其它的技术要求

9.1风力发电机对风能技术要求

大家对风能的发展展现出了浓厚的兴趣。伴随着使用风力发电机的热潮,现在需要对电力动态系统, 电力传输规划的设计评估。本文的第一个目的是提出一个准确的低阶动态模型的风力发电机组,它是 符合现代机电暂态模拟计算机程式的。 本文中,开发的模式着重于水平轴的风力发电机, 或风力机直接连到同步

网时采用异步发电机。 这其中还包含许多现代大型发电系统。 由于大型风力装置的构建是由许多个风力发电机组成的,风力发电场的建模是一个迫切的需求。因此, 本文的第二个目的是提供一种方法,它结合数个风力发电机连接到一个电网上,然后通过一个共同模式整合成一个单一的等效模型。 风力发电机主要分为定速或变速。以最小单位,涡轮驱动的感应发电机为例,它是直接连接到电网上的。 涡轮转速变化很小,那是由于陡坡的发电机转矩和转速的特性所制; 因此, 它被称为定速系统. 还有变速装置,发电机连接到电网利用电力电子变换的技术使涡轮速度受到控制,以最大限度地表现出来(例如,电力的控制) 。 这两种方法在风力工业均非常普遍。

在本文中, 我们将目光集中在建模定速装置和等效模拟几个固定转速风力发电集成园。第一种典型的风力机械频率是在0至10赫兹范围; 这也是各种机电振荡的频率。 因此,这涉及到机械振动的风力互动学与机电动力学。 这方面的例子参见本文。 因此,为了构建一个精确的模型,风力发电机可用于暂态稳定的研究。 第一种涡轮机械动力学必须能准确的代表模型。这里的风力发电机模型建出了导电模型,减少了一个详细的650阶有限元模型的一个典型的横向轴。 气动力和机械动力的减少与非线性四阶双涡轮惯性模型相结合生成了一个标准发电机模型. 模拟计算表明了模型的精确性。几个风力发电机连接到传输系统上通过一个单一的模型建模,因为每个涡轮暂态稳定系统都过于繁琐, 我们的目的是整和风力发电园成为相当于风力发电机模型的极小系统。我们对等价建模的风园涉及到把所有涡轮以同样的机械固有频率整和成单一当量的涡轮机。模拟结果表明,这种方法能够提供准确的结果。

9.2风力发电机建模的技术是暂态稳定系统

模拟结果表明,固定频率的风力发电机组主要集中在以下两个主要方法。第一种方式是把汽轮机和发电机转子作为一个单一的惯性体从而忽略系统的机械固有频率。 第二种方式是把涡轮叶片和枢纽之一的惯性体接上发电机加上一个弹簧 。 在所有这些论文中,弹簧刚度的计算是从系统的主要部分中提取的。我们的研究显示,较第一型机械频率来说第二型才是至关重要的一个精确的模型. 有限元分析表明,第一类动力的变化主要是因为灵活的涡轮叶片不够精确。 根据建模方法的算法,我们得知的主要事实是,小而灵活的机械部件是涡轮上的刀片。 结果集中表明了几个风力发电机系统和降阶风园模型的类型和与类型相结合的方法。这些模型中的大部分都采用动量理论来计算气动力。我们对发展涡轮动力的一个降阶模型为出发点,把所有机械和气动涡轮机动态效果以高度详细的用机电射程的形式表示出来。 在这个还原过程中,是以消费者的角度来分析涡轮轴驱动发电机的。目的是为了准确反映轴转速和扭矩特性与最小模型的秩序和复杂性。 数值调查表明,机械气动和机械效应的一个例子所展现的测试系统实现了有限元建模环境。该系统是一种新兴的横向风轴机床,包括三个31.7米叶片,叶片的一套点俯仰角度为2.6 , 一个82.5米的主轴,它们的额定功率为18.2 - RPM和

1.5兆瓦,在15米/秒的风速条件下. 汽轮机是透过一个简单的异步发电机模型直接连接到60赫兹的机械。 它还利用ADAMS有限元软件(来自机械动力学 公司) ,加上毫微克(即由国家可再生能源实验室)软件进行模拟。 这两个软件一起被称为亚当斯. 所有参数测试系统的模型研制出一个现实的大型机器。 整个系统包含325个自由度,包括非常详细地模拟动力和外部作用力。 由于机械设计中的大多数水平轴风力涡轮机极为相似, 结果使该方法的适用面广。 研究者在用亚

当斯/分数制进行了研究以后,还广泛接触了以一个制动脉冲对该系统的瞬态响应的研究方法。为了模仿长达0.1毫米的三相短路,发电机轴对电路的混乱反应进行了分析。 系统的反应是一个阻尼振荡的过程。 详细的拟态分析表明,系统的振荡是由于外层部分的叶片振动对两者的内在部位的叶片的作用。这样的结果是很典型的.现代风力涡轮叶片非常大,有弹性,而且往往颤动。1表明,它主要包含4 Hz分量。这也是典型的大型涡轮机, 它通常有第一型机械自然频率在0至10赫兹范围内。因为这个范围也是典型的机电振荡频率范围, 这还是风力涡轮机的关键频率范围。而研究者会倾向于研究机电振荡的频率。 模态的第一振荡模式会产生一系列的主导反应。一个典型的系统,内部惯性主导地位取决于叶根和发电机的惯性量.许多研究者都推断整个涡轮机和发电机成为一个单一的惰性体从而忽略第一机械型动态系统的作用。别人都认同第一动态模式,但不认同模式叶片弹性模式.相反,这些作者都假设叶片是一个惯性体而把模型涡轮轴作为一个弹簧体. 但是,在一个典型的系统中,轴上的刀片相比其他元件来说灵活得多. 我们的研究表明,第一机械模式的叶片可以与竖轴作为一个刚体. 我们的研究还表明,正确建模是研究力学的关键,以获取准确的瞬态仿真结果.

9.3风力电动机技术之间的能量转换

因为主要组成部分能量是短暂的,那是由于汽轮机的惯性能量的影响, 而且失速型风力涡轮机可准确模拟这种方式. 乙发电机模型中的标准做法是行之有效的建模发生器.标准而详细的两轴感应机模型是用来代表异步发电机的.由此方程可知,凡是暂态开路的时间常数,滑移速度,都是同步的电抗,还是暂态电抗.而且并在D轴和q轴定子电压中, 并在D轴和Q轴的每单位定子电流中. 转矩的计算是从定子电流的计算中得到的,是通过发电机模型参数计算出的相关参数。

风园造型中的风园分为几个风力发电机连接到传输系统中整和为一个单一的系统.这需要建模,因为每个涡轮暂态稳定,可过于繁琐.我们的目标是整和风园成为一套最起码的等效模型.等价建模风园涉及到把所有涡轮以同样的机械固有频率成一个单一相当于涡轮机的系统. 每个这些等效的涡轮然后连接到异步发电机上.甲相当于水轮机模型的前提,我们的做法是: 因为轮机都离不开一个共同的系统,每个涡轮也受到了同样的干扰力矩. 因此,涡轮机的性能相似于震荡阶段.因此涡轮可合并为一个平行的机械组合.模态分析风力公园系统支持这个假说。 考虑要予以合并的涡轮相同的自然频率机械,那么等于涡轮建模方程中,弹簧和阻尼条件汽轮机分别是惯性体。涡轮得到的风力矩是利用,并迫使水轮机具有相同输出功率为涡轮的总和,是机组的功率系数为涡轮机. 乙相当于发电机模型用异步发电机参数的纳加权平均法来进行计算.用此方法,相当于机床参数和计算,以加权平均纳每一科的异步电机等效 H/c。

10 风力发电机在现实中的使用范例

在风速12米/秒的情况下进行的测试.该系统还设有四个同步发电机. 每个同步发电机配备了调速器和励磁系统.瞬态标准模型是随着励磁和调速用于同步发电机的模型.下列所有模拟执行了修改版的电力系统测试. 电力系统的工具箱作了修改以允许模拟风力发电机的情况.8风力发电机组显示出的两个混乱的组成造型. 在系统15日之后开放路线的循环故障. 研究者分析的双涡轮惯性反应表明两种模式的振荡:一块4.5赫兹模式和一个2.0赫兹的模式. 4.5 -赫兹模式,是机械方式的汽轮机和2.0赫兹模式是机电模式的汽轮机. 类似的分析中的一个

惯性反应表明只有一个模式,在240赫兹范围内.它是一种机电模式.由于失误, 单一惯性系统图在第一摇摆区间出现了振荡反应.电力工程师可能会得出不同的结论,不同的瞬态系统和小信号稳定性能的系统. 一个惯性反应表明,一个稳定的系统,以较低的首摆动偏差和高振荡阻尼这样的形式运动会更稳定.如其他的例子证明的情况下,单一的惯性反应,发生在稳定和更精确的双惯性反应之间时是不稳定的.这个例子表明了等效风园的等效建模方法.两个惯性与一个惯性涡轮响应. 实际运动的系统,以从17日至16日为例子.21个风力发电机每接到一个系统里后,17日就通过一项简短的输电线路整和成一个系统. 所有风力发电机是相同的双惯性系统.通过建模两例进行比较,首宗案件是一个具体的模型,每个风力发电机在该风园都是仿制的个体; 这实际上形成了126阶模式的风园.今年在头前7个风力发电机驱动下,风速14米/秒,并通过一条长1公里的配电线路接到系统17路. 第二组七个所带动的风速为11米/秒,并通过 2公里的配电线路接连到系统17日.对第二个例子,风园是仿制单一相当于风力发电机的使用方法中的第五节( 6阶模型)显示出了风园实际运行能力.从3中可以看出,等效模型非常准确地代表了详细的一个风力发电系统.其它仿真案件也证明这是正确的做法.我们比较两个惯性降阶汽轮机的响应.根据有限元模型,惯性模式的每种模式,然后连接到通过一个感应发电机.响应的有限元模型是列图.1. 5惯性模式再现了每个叶片边缘和瓣弹簧减震器; 在代表低速轴弹簧刚度特性中和气动模型采用涡轮力理论.惯性模式也包含了离心力,重力和科里奥利效应.推导的五个型号惯性载荷如第三节叙述的水轮机性能.它直接透过1.68兆瓦的风力发电系统连接到60赫兹.两个惯性降阶模型整和成一个6阶模型,而有限元模型大约有650阶 ,而五年惯性模式是18秩序.可以看出,两个惯性降阶模型密切配合的高度详细的有限元及五惯性模式.在这个例子中, 我们展示灵敏度的双气轮机模式而选择的叶片断裂点.6. 相同的模型中50%的突破点位叶片弹簧为中心的叶片半径上.在例子1 .这种反应是比较了43%断点和56%的突破点. 百分比显示的位置,从沿叶片半径枢纽叶片弹簧放置的位置中,反应的分歧也相当大,值得仔细挑选的是叶片断裂点。

我国虽然是利用风力进行发电的最早的国家之一,但在其应用技术以及应用范围上的发展却不容乐观。从现在开始,大力开展风力发电事业,我国未来的风力发电的前景是很有希望的,虽然国外的风力发电技术已比较成熟,但我们应大力开展自主研发。

本文根据我国现有的风力发电的基本理论,对风力发电机的风轮,主轴,回转体和刹车装置的结构进行了设计.根据实际工况要求和相关的设计参数对所设计的结构中的重要元件进行了校和.其中,风轮是重点进行设计的元件.风轮的结构包括桨叶,桨叶轴,圆盘及其上面的其他元件。通过对风力发电机的结构设计,使它基本实现了风能转化为电能。这就使自然风为我们人类所用.本文所设计的装置基本能保证五千瓦的功率输出,但设计过程中也会因为考虑的不全面而使功率损失掉一部分,这些还需要进一步进行研究。

通过此次长达几个月时间的毕业设计,让我大学最后的生活充实而充满挑战性,其中很多问题是在次前没有遇到过的,当我解决不了的时候,第一想到的是我们的老师,而他总是很耐心的给我们讲解,所以在这里首先要感谢的是老师,他本身教学任务繁重,还要指导我们的毕业设计,有时候连一个基本的中午休息时间都没有,对此我们感激不尽,相信即使大学毕业了也不会忘记他曾经给予的帮助;第二还要感谢同学,有的时候问题很棘手,我就会找同学讨论,感谢他们在这中间给予的帮助

大学生活即将结束,通过这次设计又将大学里所学的知识统统拿出来用了一遍,用知识去解决问题,我想即使以后走入社会也不惧任何困难。

参考文献

[1]丁元杰.风力发电机的原理与应用.北京:机械工业出版社,.

[2]童诗白,华成英. 模拟电子技术基础.北京:高等教育出版社,.

[3]常健生. 风力发电机检测与转换技术.北京:机械工业出版社,.

[4]阎石. 风力发电机数字电子技术基础.北京:高等教育出版社,.

[5]王晓明. 电机的单片机风力发电机控制基础 北京:北京航空航天大学出版社,.

[6]陈伯时. 电力拖动自动控制系统―运动控制系统.北京:机械工业出版社,.

[7]刘剑.朱德文.电梯电器设计.北京;中国电力出版社,.

[8]Young Man Cho, Rajesh Rajamani. Identification and experimental validation of a scalable elevator vertical dynamic model[J]. Control Engineering Practice ,.

篇6:风力发电机设计

2.1单一风力发电机模型组成

图2-1 风力发电机模型电路图

单一风力发电机模型由两个基本部分组成。降阶双涡轮惯性模型和驱使风力的力矩.在本文中,我们假设发电机是一个标准的异步电机直接连接起来的网络,这也是最常见的配置方法。其结构如图2-1所示。

2.2叶片数目

风力发电机叶片的数目的确定可以根据以下公式来计算:

有效传动比=实际涡轮转速/额定涡轮转速;电气频率基数;每个叶尖惰性体:每个叶片根部惰性+惯性+惯性涡轮轴传动力/惯性力+发电机轴转子的惯性力; 叶片刚度,叶片阻尼,气动风力矩.发电机电气扭矩和叶尖角度通过齿轮传动反映出发电机轴向角.计算这个角需要有叶片断裂的惯性力和弹簧减振器的相关参数。如果叶片放置在不破裂的正确位置,然后得到的机械模态形状就会正确了。 研究的突破点主要在一个刀片力学性能上,可以从有限元分析或试验的叶片得到相应的数据,这个关键的数据似乎发生在第二个节点弯曲的叶片上.在研究实例个案上,降阶系统的灵敏度放置不当的突破点是很大的. 所幸的是, 最先进的叶片或制成品设施(如在国家可再生能源实验室的设施)有所需的资料用以确定叶片的断裂

点。电力工程师只需要这一信息请求便可轻易计算出典型制造的数据.还可以计算出知识系统的第一型机械固有频率的使用刚度。

哪里第一模型机械研究技术领先,其机械的固有频率与系统连接到一起的几率就大. 例如,在上一节系统的系统情况就是这样.一般来说,制成品可以提供这样的频率范围.它可以很容易的用制动脉冲对水轮机进行计算和分析.在大多数情况下叶片阻尼很小,并假定为零.在旋转机中,衡量叶片的刚度是用弹簧刚度来计算的.主要衡量叶片的边缘刚度.可以看出,计算刚度是依靠俯仰的角度的。这也仅限于从零度至10度的'典型情况. 根据这一限制表明,差异很小的不同位置需要设置不同的点.这意味着,根据实验的支持,这是水轮机模型很小敏感性变异系统的准确的俯仰角. 假设一个理想的转盘来进行风力矩的计算.在叶尖部分反映出的实际速度,加上空气密度的影响,通过清扫面积的叶片的磨合,计算出了机组的功率系数. 不幸的是,这不是一个常数. 然而,大多数涡轮制成品的特性反映出同一条曲线. 曲线表示,作为功能机组的叶尖速比. 叶尖速比的定义是自由风速度比涡轮叶片的冰山速度. 风力发电机模型结构图如图2-2所示。

图2-2 风力发电机模型结构图

2.3机舱

机舱包容着风力发电机的关键设备,包括齿轮箱、发电机。维护人员可以通过风力发电机塔进入机舱。机舱左端是风力发电机转子,即转子叶片及轴。

2.4转子叶片:

转子叶片的作用是捉获风,并将风力传送到转子轴心。现代600千瓦风力发电机上,每个转子叶片的测量长度大约为20米,而且被设计得很象飞机的机翼。轴心:转子轴心附着在风力发电机的低速轴上。低速轴:风力发电机的低速轴将转子轴心与齿轮箱连接在一起。在现代600千瓦风力发电机上,转子转速相当慢,大约为19至30转每分钟。轴中有用于液压系统的导管,来激发空气动力闸的运行,齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50倍。高速轴及其机械闸:高速轴以1500转每分钟运转,并驱动发电机。它装备有紧急机械闸,用于空气动力闸失效时,或风力发电机被维修时。

发电机:通常被称为感应电机或异步发电机。在现代风力发电机上,最大电力输出通常为500至1500千瓦。

偏航装置:借助电动机转动机舱,以使转子正对着风。偏航装置由电子控制器操作,电子控制器可以通过风向标来感觉风向。图中显示了风力发电机偏航。通常,在风改变其方向时,风力发电机一次只会偏转几度。

电子控制器:包含一台不断监控风力发电机状态的计算机,并控制偏航装置。为防止任何故障(即齿轮箱或发电机的过热),该控制器可以自动停止风力发电机的转动,并通过电话调制解调器来呼叫风力发电机操作员。

液压系统:用于重置风力发电机的空气动力闸。

冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。一些风力发电机具有水冷发电机。

塔:风力发电机塔载有机舱及转子。通常高的塔具有优势,因为离地面越高,风速越大。现代600千瓦风汽轮机的塔高为40至60米。它可以为管状的塔,也可以是格子状的塔。管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。格状的塔的优点在于它比较便宜。

3风力发电机的回转体结构设计和参数计算

3.1 联轴器的型号及主要参数

由于主轴末端轴颈为80mm,选择HL6型弹性柱销联轴器,其主要参数为 9C体积小、重量轻。相同条件下,比普通渐开线圆柱齿轮的重量轻1/2以上,1/2到1/3。传动效率高。适应性强,传动功率范围大。

3.2 初步估计回转体危险轴颈的大小

1.回转体, 由于回转体位于整体装置的重心偏后200mm处,所以桨叶、桨叶轴、圆盘、增速器和托架对回转体会产生正向弯矩,发电机对回转体产生负向弯矩。回转体由:回转轴底盘、加强钣金、回转轴轴承轴肩、回转轴推力轴承轴段、回转轴危险轴段、滑动轴承注油口、回转轴轴向定位段、安装滑环轴段、轴向定位螺母、轴向定位挡板、回转体上联接板、铜套、无缝钢管、推力轴承等部分组成[7]。 ,其中回转轴的左右摆动问题通过滑动轴承来解决它能很好的解决由于顶部重心偏向前而引起对轴的弯矩,加强了回转轴的抗弯强度。

回转轴挡板可以在安装过程中防止回转轴脱落下滑,回转轴中心钻出 的通孔此处为发电机输电线路。因回转轴固定在塔架上当风向改变对风时套筒上方连接

的所有部件随着套筒一起转动铜套与套筒为过盈配合,铜套与回转轴之间用润滑油润滑所以输电线路不会缠到一起。

3.3 叶片扫描半径单元叶尖速比

我们的研究已表明,可以假设固定情况下极高的风力条件下进行暂态稳定研究. 这是因为典型的变异叶尖速比下一个10秒的瞬态叶尖比小。假定风并没有显著的改变模拟时间, 实际上,涡轮轴的扭矩实际上是一个调制版。 调制是众所周知的,而且主要是考虑由于大楼遮蔽和力学失衡的作用,在专业人员和模式上才能出现典型的调制频率(注: 1人,是一种模式,每一个涡轮叶片).我们不把这些效应考虑在内,我们假定扭矩引起的暂时性故障比调制扭矩的多. 许多其他研究者已进行了这个假设。今后的研究将侧重于检验这一假设。 在一般情况下,双涡轮惯性模型在这里是一个相对稳健的模式,涵盖了许多汽轮机运行条件。 所有模型参数相对恒定,缺少敏感性的俯仰角度。

4风轮桨叶的结构设计

4.1桨叶轴复位斜板

水平轴风力机的风轮一般由1~3个叶片组成(本设计中取6片桨叶),它是风力机从风中吸收能量的部件。叶片采用实心木质叶片。这种叶片是用优质木材精心加工而成,其表面可以蒙上一层玻璃钢[9]。

在本设计中桨叶材料选用落叶松作为内部骨架,桨叶轴从左至右安装零部件分别为:桨叶轴复位斜板、桨叶轴支撑轴承座、轴套、光轴、轴向固定螺母、垫片、加强钣金、桨叶夹槽。

4.2 托架的基本结构设计

托架是放置轮盘、主轴、增速器、发电机以及回转体、滑环和刹车装置等附件的。它分两层上层为支撑轮盘、主轴、增速器、刹车装置和发电机。下托板与回转体上端面联接,中间放置滑环和滑轮组件。 滑轮组件是把刹车装置的钢丝绳缠绕在滑轮上改变其方向令钢丝绳与托板不能接触。

篇7:飞行的风力发电机

飞行的风力发电机

风能是现在世界上发展最快的能源,但这种无污染能源的利用还面临不少问题.比如,它会产生噪音,旋转的'叶轮机会干扰电视信号接收,而在没有风的时候,这些风车就显得大煞风景了.由于风力不够稳定,据统计,风车的发电效率很少能高于三成(实际发电能量与风车全速转动发电能量之比),而如果出现台风和龙卷风,风车往往会夭折.

作 者: 作者单位: 刊 名:农村电工 英文刊名:RURAL ELECTRICIAN 年,卷(期): 16(2) 分类号: 关键词: 

篇8:风力发电机用SKF轴承介绍

大家知道在风力发电机上用的SKF轴承非常的难以选择,今天,我就把风力发电机上用的进口SKF轴承给大家介绍一下。风力发电机用SKF轴承大致可以分为三类,即:偏航SKF轴承、变桨SKF轴承、传动系统SKF轴承(主轴和变速箱SKF轴承)。偏航SKF轴承安装在塔架与座舱的连接部,变桨SKF轴承安装在每个叶片的根部与轮毂连接部位。每台风力发电机设备用一套偏航SKF进口轴承和三套变桨SKF轴承(部分兆瓦级以下的风力发电机为不可调桨叶,可不用变桨SKF轴承)。

1 代号方法

风力发电机偏航、变桨SKF轴承代号方法采用了JB/T 10471D中转盘SKF轴承的代号方法,但是在风力发电机偏航、变桨SKF轴承中出现了双排四点接触球式转盘SKF轴承,而此结构SKF轴承的代号在JB/T 10471D2004中没有规定,因此,在本标准中增加了双排四点接触球转盘SKF轴承的代号。由于单排四点接触球转盘SKF轴承的结构型式代号用01表示,而结构型式代号02表示的是双排异径球转盘SKF轴承结构,因此规定03表示双排四点接触球转盘SKF轴承结构。

2 技术要求

2.1 材料

本标准规定偏航、变桨SKF轴承套圈的材料选用42CrMo,热处理采用整体调质处理,调质后硬度为229HBD269HB,滚道部分采用表面淬火,淬火硬度为55HRC-62HRC。由于风力发电机偏航、变桨SKF轴承的受力情况复杂,而且SKF轴承承受的冲击和振动比较大,因此,要求SKF轴承既能承受冲击,又能承受较大载荷。风力发电机主机寿命要求,SKF轴承安装的成本较大,因此要求偏航、变桨SKF轴承寿命也要达到20年。这样SKF 轴承套圈基体硬度为229HB-269HB,能够承受冲击而不发生塑性变形,同时滚道部分表面淬火硬度达到55HRC-62HRC,可增加接触疲劳寿命,从而保证SKF轴承长寿命的使用要求,

2.2低温冲击功

本标准对偏航、变桨转盘SKF轴承套圈低温冲击功要求:D20℃Akv不小于27J,冷态下的Akv值可与用户协商确定。风力发电机可能工作在极寒冷的地区,环境温度低至D40吧左右,SKF轴承的工作温度在D20~C左右,SKF轴承在低温条件下必须能够承受大的冲击载荷,因此,要求SKF轴承套圈的材料在调质处理后必须做低温冲击功试验,取SKF轴承套圈上的一部分做成样件或者是与套圈同等性能和相同热处理条件下的样件,在D20~C环境下做冲击功试验。

2.3 SKF轴承齿圈

由于风力发电机SKF轴承的传动精度不高,而且齿圈直径比较大,齿轮模数比较大,因此,一般要求齿轮的精度等级按 GB/T10095.2---中的9级或者10级。但是由于工作状态下小齿轮和SKF轴承齿圈之间有冲击,因此,SKF轴承齿圈的齿面要淬火,小齿轮齿面硬度一般在60HRC,考虑到等寿命设计,大齿轮的齿面淬火硬度规定为不低于45HRC。

2.4 游隙

偏航、变桨SKF轴承在游隙方面有特殊的要求。相对于偏航SKF轴承,变桨SKF轴承的冲击载荷比较大,风吹到叶片上震动也大,所以要求变桨SKF轴承的游隙应为零游隙或者稍微的负游隙值,这样在震动的情况下可减小SKF轴承的微动磨损。偏航SKF轴承要求为小游隙值,即0-501~m。另外,由于风力发电机偏航和变桨SKF轴承的转动都由驱动电机驱动,SKF轴承在负游隙或小游隙状态下应保证驱动电机能驱动,因此,SKF轴承在装配后需要空载测量启动摩擦力矩,具体力矩数值根据主机驱动系统的不同也不尽相同。

2.5 防腐处理

风力发电机设备在野外工作,而且偏航、变桨SKF轴承的一部分是裸露在外面的,会受到大气污染,高湿度的环境也会腐蚀SKF轴承基体, 因此,裸露在外面的偏航和变桨SKF轴承的部位要求进行表面防腐处理,一般采用镀锌处理。 根据需要,在镀锌层外部进行刷漆保护处理。

篇9:小型永磁式风力发电机的设计

小型永磁式风力发电机的设计

摘要:本文根据自己长期小型发电设备设计经验,结合现有小型永磁式风力发电机的特点,介绍了目前对永磁同步电机设计在电机结构和优化设计等方向的研究,提出了永磁同步发电机在定子硅钢片、转子外壳、轴等结构上进行改进的设计和计算方法。

关键词:发电机;永磁式;设计;风力;小型;

前言

我国社会经济发展迅速,对于能源的依赖较多。而能源对我国环境污染严重,需要大力开发清洁能源,加上国家地形复杂,人口又多,居住分散,小型风力发电系统因为属清洁能源,对环境无污染而被广泛利用。

目前的小型风力发电系统中,主要采用的是永磁发电机,由于永磁直流发电机换向装置易出现故障,寿命低,造成了风力发电维护难度,直接影响到其度电成本,因此,除了对电压波形有严格要求的系统之外,一般都使用永磁同步电机。

虽然,永磁同步电机采用永磁体励磁,无需外加励磁装置,无需换向装置,具有效率高、寿命长等优点。但是由于其励磁不能调节,从而使得电压调整率较高,输出电压波动范围较大。传统的全桥式调整依然会存在一些电压尖刺,对蓄电池的寿命影响很大。因此,需要对永磁同步电机进行设计改进,使其具有结构简单、重量轻、高性能的特点,以满足小型风力发电的实际需要。

1.永磁同步电机改进研究方向

1.1.电机结构方面

永磁电机的结构随着其技术发展,已有多种形式,主要有:永磁同步电机、永磁无刷直流电机,另外还有永磁盘式电机、永磁无轴承电机等特种电机。它们的设计准则都是利用稀土永磁体的高矫顽力,增加磁通、减小电枢反应、高速运行提高电磁效率。

1.2.优化设计方面

在稀土永磁材料价格昂贵的情况下,考虑如何合理地选择水磁体的工作点,使之在满足电机性能指标前提下,使所用的永磁材料最少,即电机的成本最低或体积最小。修改电机内部机构尺寸的参数,保证在同等电机性能下,电机的结构更合理,体积最小。

1.3.磁场分析计算和数值方法的研究

传统的电机性能分析方法为等效磁路法,这种分析方法,减少了计算所需要的时间,在初始估算、设计方法比较时比较适用,由于永磁电机内部结构越来越多样化,磁场分布也变得更加复杂,仅依靠这种分析方法已难以描述电机内部磁场的真实情况。

永磁电机设计中,除了电机新结构的发明创造外,最重要的.发展是用有限元方法进行磁场分析。为了充分发挥永磁材料的优异性能,永磁电机的结构和传统电机有很大的差别。永磁电机结构复杂,永磁材料的磁特性为各向异性等,这些都给磁场分析带来了新的课题。对于一些复杂的磁场环境,除了需要进行一维分析外,还需要进行二维分析,除了静态分析外,还需要进行瞬态分析。

2.永磁同步发电机结构改进的设计

2.1.同步发电机结构

同步电机作为交流电机的一种,其最大的优点是转速与频率间有严格不变的关系n=60f/p,即当电源频率恒定时,电动机转速不变,且与电源频率成正比。异步电机则没有这个优点。而且,同步电机定、转子两方磁场是相互独立、可控的。由于永磁电机不需要直流励磁电源,对于交流同步电机来说省去了励磁机、自励系统等。

2.2.同步发电机结构改进设计

发电机结构上改进设计主要有:定子硅钢片、转子外壳、轴的和轴承等方面设计。

2.2.1.定子硅钢片设计

电机选用硅钢片时需要注意几个要点:低铁损、高磁导率、硬度合适、耐蚀性能良好等。发电机采用牌号为DW360―50的无取向冷轧硅钢片,其厚度为0.5mm。冷轧硅钢片的叠压系数能够达到0.98,比热轧约高3%,考虑到加工工艺,预选取叠压系数为0.93。选择定子槽的槽型,在小功率永磁电机中,常用的电枢槽型有梨形槽、半梨形槽、矩形槽、半闭口矩形槽等,在尺寸特别小的时候还采用圆形槽结构。冲片数量根据电枢计算所得到的定子长度来确定,通过冲片压板将冲片压装在定子支承轴上,并采用斜槽结构,斜槽的扭转宽度正好等于一个槽距。

2.2.2.转子外壳设计

为了便于安装永磁体、便于对电机内部结构进行维护,电机所设计的转子外壳分成三个部分,包括:转子前壳、转子后壳和转子外壳,通过螺栓连接成一个整体。做成三个部分的好处是,各个部分都可以使用钢材或钢管车削而成。在加工过程中,可以根据需要,随时将三个部分临时进行组装,组合起来进行精加工,可以保证整个设备的加工精度。转子外壳用于安装永磁铁,需要在其内表面铣出凹槽。转子前后壳需要安装轴承,其结构根据轴承计算获得尺寸设计。转子后壳还需要和叶片连接。

2.2.3.轴的设计

电机的支承轴可以划分成四个部分:两个用于和轴承装配的轴段,一个安装定子矽钢片的轴段,另一个安装在基座上的轴段。轴的直径首先由轴承计算所确定,再确定其余轴段的直径。在设计轴的长度时,需要注意叶片于塔架之间的间距问题,因此在电机到基座之间,轴应该预留一段长度,并通过后续有限元分析,在保证结构强度的前提下,优化这段尺寸。

2.2.4.轴承的设计

轴承的选用和计算是很关键的一个部分,它的确定,是发电机中几个主要结构尺寸确定的前提条件,如转子前后壳、轴等。

2.2.5.设计时,除了这些主要零部件需要确定外,还需要考虑以下几个方面的问题:

2.2.5.1.发电机整体的密封问题。在发电机的各个连接部分存在防水、防尘问题。如在转子前后壳与转子外壳连接部分做出凸台、轴承盖选用的密封件、转子后壳的一端做成密封形式等。

2.2.5.2.转子后壳二端螺孔问题。由于转子后壳二端是密封的,为了方便维护安装在这个附近的轴承,需要做一个螺孔,用于顶出轴承,并且在平时需要用螺栓将孔密封。

2.2.5.3.叶片叶柄表面保护问题。考虑到新型叶片材料采用的是玻璃钢,为了防止安装时,螺栓将叶片叶柄表面压坏,需要设计一块压板垫在叶片与螺栓头之间。

3.永磁同步发电机计算方法

永磁电机的计算有多种思路,着眼点不同,计算过程中的侧重点也不相同。直接计算方法计算过程简单,误差较大,但在电机设计初步阶段对计算要求不高的前提下,其设计计算的误差尚可以接受,可以与后期的试验分析相结合进行修改,最后得到结果。

在确定了永磁电机的类型、应用的环境以及所需要达到的设计指标后,通过电磁理论计算与电机外形结构计算相结合的方法对电机进行初步设计,然后,再通过后续的试验分析修正所计算的结果,最后达到设计目的。

3.1.设计计算指标

电机的计算指标为:

额定功率PN=2KW;

相数m=3,Y型连接;

极数对P=6;

额定相电压UN=50V;

额定转速nN=300r/min;

额定频率 =30Hz;

功率因数cos=0.9

3.2.主要尺寸设计计算

3.2.1.电枢绕组设计

首先确定电机的电枢绕组分配方案,包括电机中共使用多少对磁极、定子槽数、三相绕组的分配方式、采用单层还是双层绕组等。确定了绕组的分配方式后,根据槽的面积选择合适的槽满率以及导线类型,求出绕组的基本数据,包括:每相串联匝数N、电流密度J。

3.2.2.主要尺寸和参数计算

使用直接磁路计算法设计发电机结构的主要尺寸参数计算过程为:

3.2.2.1.根据小型永磁电机气隙特点选择永磁体的工作点,然后根据工作点选择永磁体类型,得到其性能参数。

3.2.2.2.预取线负荷A,使A/Bδ足够小以保证发电机有较好的外特性。

3.2.2.3.求解出转子尺寸,包括转子内径和转子外径。然后预取合适的气隙长度δ和长径比λ,求出定子外径和电枢长度。

3.2.2.4.永磁体尺寸计算,包括永磁体的磁化方向长bM、径向长度LM、永磁体体积VM、截面积SM、宽hM以及气隙长度修正和工作点气隙磁感应强度有效值计算。

3.2.2.5.由最初选择的绕线尺寸、电枢长度以及材料属性求出定子绕组的电阻;求出所选择的槽型的漏磁导数λS、齿和端部的漏磁导数λZ和λg,由这些导数求出基本漏抗X00和差漏抗Xov,最后求出整个电机的漏电抗Xσ。

3.2.2.6.根据所设计的转子轭形状,求出转子的漏磁导A。

3.2.3.输出特性

由空载磁通密度Φo、基波绕组系数KW一每相匝数N、额定频率?、可以求的发电机的输出空载电压Eo和空载磁势Fo。

3.2.4.参数修改

在直接计算法中,由于很多参数都是凭借经验选取,最后造成的误差可能较大,因此在计算完以后需要根据计算得到的结果修改所用到的参数,保证最后计算得到的结果达到预期目标。

参考文献:

[1]花为;张淦.新型集中绕组小型永磁风力发电机的设计与分析.电力科学与技术学报.-09-28

[2]王金平;周晓燕;唐任远.离网型低速高效永磁风力发电机的研制.中小型电机.-08-01

[3]包广清;李战明;施进浩.一种新型组合式横磁通永磁风力发电机.中国电机工程学报.-01-25

[4]高钰阁.对转双转子永磁同步风力发电机的设计与分析.沈阳工业大学.-12-24

[5]丁成斌.小型永磁风力发电机性能测试技术的研究.东北大学.-01-01

篇10:大型水平轴风力发电机桨叶稳定性研究

大型水平轴风力发电机桨叶稳定性研究

大型水平轴风力发电机桨叶为流-刚-柔耦合的周期时变多体系统.本文暂未考虑风载荷,分析了重力载荷和桨叶预锥角、转速等因素的'变化对稳定性的影响.力学建模中,考虑了桨叶挥舞、摆振、扭转和轴向运动以及根部铰的挥舞、摆振和变矩等刚体运动.利用有限元法形成5节点18自由度的刚-柔混合梁单元模型,应用Hamilton原理建立桨叶动力学方程,求得对应的摄动方程,采用Newmark隐式积分方法求解.根据Floquet理论判断运动稳定性,计算了相关转换矩阵的特征值.结果表明预锥角对桨叶运动稳定性影响不容忽视.在通常的工况下,桨叶能够稳定地运转.

作 者:王介龙 陈彦 薛克宗  作者单位:清华大学工程力学系,北京,100084 刊 名:工程力学  ISTIC EI PKU英文刊名:ENGINEERING MECHANICS 年,卷(期): 19(2) 分类号:O317 关键词:风力发电机   桨叶   稳定性   Hamilton原理   Floquet理论  

篇11:新型300W风力发电机叶轮的改进设计

新型300W风力发电机叶轮的改进设计

设计了一套启动性能相对较好、风能利用率相对较高、失速限速性能平缓的螺旋桨式叶轮.优化叶轮设计参数,选择合适翼型,并对翼型进行修形,以改善叶轮的结构弹性;并能通过较大的位移来提高机组的'减载能力,从而减少风机造价,提高风机的可靠性.

作 者:赵华洋 白高娃 朱世贤 ZHAO Hua-yang BAI Gao-wa ZHU Shi-xian  作者单位:赵华洋,ZHAO Hua-yang(内蒙古民族大学,机械工程学院,内蒙古,通辽,028043)

白高娃,BAI Gao-wa(通辽职业学院,理工系)

朱世贤,ZHU Shi-xian(佳木斯大学)

刊 名:现代化农业 英文刊名:MODERNIZING AGRICULTURE 年,卷(期): “”(11) 分类号:S2 关键词:风力发电机   叶轮改进   特性分析  

篇12:风力发电机叶片气动外形设计方法概述

0 引 言

风力发电是风能利用的主要方式,叶片是用来转换风能的关键部件。风力发电机叶片的外形决定了风能转换的效率,因而风力发电机叶片气动外形设计关系到风力发电机的性能,是风力发电机设计着重考虑的部件之一。

Glauert理论、Schmitz理论和动量―叶素理论是叶片设计的基础理论,现代叶片设计方法都是在这些理论上进一步发展起来的。到目前为止,Glauert理论和动量―叶素理论仍在广泛的使用。分别介绍了三种理论如何求解叶片的弦长和来流角并运用C#语言对以上三种方法进行编程,实现对叶片弦长和来流角的求解,并对这三种方法求解出来的结果进行比较和分析。

1 理论方法介绍 1.1 Glauert理论

G1auert设计方法是考虑风轮后涡流流动的叶素理论(即考虑轴向诱导因子a和切向诱导因子b);但在另一方面,该方法忽略了叶片翼型阻力和叶梢损失的作用,这两者对叶片外形设计的影响较小,仅对风轮的效率Cp影响较大。[4]

由一系列的推导知道[1],对于在给定半径r处的尖速比 ,当

时,即

而 ,则

即 ,由此可得:

(3)将上式代入(1),便可求得a值。 根据

便可求得b,进而可求出如图1所示给定半径处的来流角

(a)速度 (b)作用力

图1 翼型在气流中的运动分析及受力分析

(4)

便可求出 (5) 1.2 Schmitz理论

很多基本理论是在风力发电机假设叶片无限长的情况下建立的,对于有限长度的叶片当风轮旋转时,升力翼的下表面压力大于大气压力,上表面压力小于大气压

时,CP有最大值。令 (1)式中: ―中间变量

在等式两边同除以 ,得

(2)

Scienti? c Research科学研究

截面号1

3345678910

(a)弦长 (b)来流角

图6 动量―叶素理论得到的弦长和来流角

表1 三种方法计算出来的结果

Glaurt 理论计算结果

弦长距离叶根距离r(m)

(m) 0.12750.3700.2550.3590.38250.2960.510.2420.63750.203 0.7650.1730.89250.151 1.020.1331.14750.119 1.2750.108Schmitz 理论计算结果距离叶根距离距离r 弦长

(m) (m)

0.12750.3700.2550.3590.38250.2960.510.2420.63750.203 0.7650.1730.89250.151 1.020.1331.14750.119 1.2750.108

动量―叶素 理论计算结果

弦长来流角距离叶根距离r(m)

(m) (°)

0.12750.36539.860.2550.35227.410.38250.28920.270.51 0.236 15.96 0.63750.19713.070.7650.172 10.790.89250.1429.751.020.1308.271.14750.1097.601.2750.099 6.21

来流角

(°)40.6127.9620.6216.1313.18 11.129.60 8.447.536.79 来流角(°)40.6127.9620.6216.1313.18 11.129.60 8.447.536.79 截面号13345678910截面号12345678910

通过对比以上数据可以得出

(1)Glauert理论和Schmitz理论计算出来的.弦长和来流角偏大。主要是动量―叶素理论考虑较为全面,考虑了叶尖损失和轮毂损失(在本算例中影响很小),而Glauert理论和Schmitz理论考虑不够全面,只考虑了某一方面。

(2)此实例中,尽管Glauert理论和Schmitz理论考虑的方面不尽相同,但在此算例中计算出来的弦长和来流角一样。从理论上Glauert理论应该更合理,[11]

因为Glauert理论还考虑了了叶轮后涡流流动损失。 (3)对比已经设计出来的1kW的叶片,以上三种方法设计出来的叶片还需要进一步修型,以满足加工、工艺和气动性能方面的的要求 3 结论

(1)比较Glauert理论、Schmitz理论和动量―叶素理论设计出的叶片,可以发现用动量―叶素理论设计出来的弦长和来流角较Glauert理论和Schmitz理论更小。 (2)运用以上三种理论设计的出来的弦长和来流角在叶跟处都偏大,与实际的叶片有较大的偏差。

(3)叶片设计的过程是比较复杂的,叶片初步设计出来以后,为了满足其结构、成本、加工条件和气动性能还需要大量的修型。

参考文献

[1] 王凡. 风力发电机的叶片设计方法研究[D].南京:南京理工大学,[2] 贺德馨,等.风工程与工业空气动力学[M].北京:国防工业出版社,

[3] 田德.浓缩风能型风力发电机三与四叶片叶轮的风洞实验研究.太阳能学报.2007,28(1):74-80[4] 刘雄,陈严,叶枝全.水平轴风力机气动性能计算模型[J].太阳能学报,,26(6):792-799[5] 陈云程,陈孝耀,朱成名.风力机设计与应用[M].上海:上海科学技术出版社,1990

[6] 时燕.小型风力发电机失速调节型叶轮的实验研究[D]. 呼和浩特:内蒙古农业大学,[7] S.S.雷欧.工程优化原理及应用[M].北京:北京理工大学出版社,1990

[8] 刘雄,陈严,叶枝全.风力机桨叶总体优化的复合形法[J].太阳能学报.,22(2):157-161[9] 刘翠.风力机叶片的优化设计及其动力学特性分析[D].长春:吉林大学,2005[10] Tony Burton 等.风能技术[M].武鑫等译.北京:科学出版社,2007.9

[11] 张果宇,冯卫民,刘长陆,俞剑锋.风力发电机叶片设计与气动性能仿真研究[J].能源研究与利用.2009(1)

通讯作者: 田德(1958-) 男, 教授、博士生导师.华北电力大学可再生能源学院。电子信箱:tiande8325@yahoo.com.cn

篇13:风力发电机叶片气动外形设计方法概述

贾娇1 田 德※1,2 王海宽1 李文慧1 谢园奇2

(1.内蒙古农业大学机电工程学院 2.华北电力大学可再生能源学院)

摘 要:该文介绍了目前风力发电机叶片的主要设计理论――Glauert理论、Schmitz理论和动量―叶素理

论。运用以上三种理论,使用c#语言编程分别计算了1000W叶片的弦长和来流角,并对计算出的结 果进行了比较和分析。从设计的结果可以得到,用动量―叶素理论设计出来的弦长和来流角较Glauert 理论和Schmitz理论设计出来的弦长和来流角更小。但是用以上三种理论设计出来的弦长和来流角在 叶根处都偏大。

篇14:异步发电机在风力发电中的应用

异步发电机在风力发电中的应用

摘要:风力发电是当今新能源应用的重要方向。包含异步电机和电力电子变换器的风力发电系统具有良好的应用前景。本文介绍了我国风力产业的现状与发展展望,分析了笼型异步电机和绕线型异步电机在大型风电基地、海上发电和离网式应用中的优势。本文网络版地址:http://www. eepw.com.cn/article/164381.htm

关键词:风力发电;异步电机;笼型;绕线型;离网式

DOI: 10.3969/j.issn.1005-5517..9.002

为了缓解能源危机、环境污染和发展低碳经济,人们越来越重视新能源与可再生能源的应用。其中,风力发电是新能源技术中最成熟、最具规模开发条件和商业化发展最强劲的发电方式之一[1-2]。

据中国风能协会发布的《中国风电装机容量统计》显示,我国累计安装风电机组53764台,装机容量75324.2MW。其中,风力资源主要集中在“三北”地区(东北、华北、西北)、沿海及海上风能丰富区以及内陆局部风能分布区[1-3]。而风力发电本身也显示出由小规模向大规模、小容量向大容量、恒速恒频向变速恒频、单一陆地向海陆兼顾的发展趋势。

实际风能利用中,电励磁同步机在并网时,会因风速的不稳定性造成功率的冲击,不利于发电机和整个系统的安全稳定运行,因此不能用于齿轮驱动的直接并网风力发电系统;永磁式同步电机效率较高,只能通过整流逆变的变速恒频的方式并网发电,还有永磁材料容量和强度的限制[4-5]。根据转子结构不同,一般可将异步电机分为绕线式和鼠笼式两种。笼型异步电机方便变极,是最早应用的可直接并网的风力发电机;绕线式异步电机即双馈电机,在背靠背变流器的控制下,可大范围变速并网运行。因此,异步电机在国内外风力发电领域中具有明显的应用优势。

本文将结合风力发电的发展背景,对异步电机在风电场合的应用优势进行说明,并指明高性能的异步电机风力发电系统离不开电力电子技术的支撑。

绕线型异步电机概述[5-8]

绕线型异步电机的转子可与外部连接,如双馈异步发电机(DFIG)和OptiSlip感应发电机(OSIG)等。其中,DFIG在我国风电中应用较多。双馈异步发电机定子绕组直接连接定频三相电网,转子外连电力电子变流器,以控制转子的电气特性,如转子电压和频率。在超同步发电状态,发电机的转速变化时,可通过电力电子背靠背变换器调节转子频率使定子频率与电网频率相同,实现转子侧和定子侧同时向电网馈电与变速恒频发电控制。其基本拓扑如图1所示。

绕线型双馈异步电机的结构带来的优缺点如下:

1. 流过转子电路中的功率为转差功率,一般只有发电机额定功率的1/4~1/3;

2. 可控制无功功率,通过独立控制转子励磁电流来解耦有功和无功功率,无须从电网励磁,而从转子电路中励磁;

3. 不可避免的要使用滑环和电刷。

在大型风电基地中的适用性

普通笼型异步电机的定子由铁心和定子绕组组成,转子采用笼型结构。早期的异步发电机首先要解决的问题是电机自励建压的问题,如在输出端连接适当大小的电容器给笼型感应发电机提供励磁,其缺点是无法连续调压,只能离散地调节励磁。随着电力电子技术的飞速发展,利用可控开关功率器件组成的电力电子变换器可以产生连续可调的无功功率,从而替代传统的单独的电容励磁,使得电力电子变换器与感应发电机相结合的发电技术得到了迅速的发展。

如基于背靠背变换器的并网型异步风力发电系统,其结构拓扑如图2所示。定子绕组通过整流器和逆变器与电网或者负载相连:前者工作在整流状态,输出一个稳定的直流电压;后者工作在逆变状态,输出恒频恒压的交流电。

将电机转子和风力机相连,通过风力机的升速齿轮驱动转子超过同步速,即可将风力机的机械功率转化为电功率,馈送电网或供给负载。对普通笼型异步电机而言,通常有如下优缺点:

1.笼型异步电机因坚固的无刷结构,而具有机械简单、效率高、价格低廉和维护要求低的特点;

2.可适用于恒速发电和变速发电,可通过电力电子变换器获得无功励磁功率;

3.电机本体适用于大功率容量,可高达几兆瓦,具有良好的经济性;

4.有功和无功相耦合,影响系统性能。

为克服普通笼型异步电机发电系统中有功和无功相耦合对系统性能的不利影响,进一步发挥笼型异步电机的优势,美国田纳西理工大学的Ojo教授于提出一种新型笼型异步电机―定子双绕组异步电机(DWIG),其定子上布置了两套绕组,一套为输出电能的功率绕组,一套为调节励磁的控制绕组,除容量不同外,它们的.极数及绕组形式一样,且在电气上没有直接连接,仅通过磁场耦合。功率绕组,接有励磁电容,通过整流桥向负载供电;控制绕组,接有电力电子变换器,用于调节发电机内部磁场,使其在不同的工况下能稳定运行。

笼型异步电机在风电中应用广泛,如普通笼型异步电机可用于分布式风电场合;定子双绕组电机适用于海上风力发电等。

在分布式风电中的适用性

我国内陆有局部风能分布区,分布式风力发电具有较大市场。

在中小规模离网型、微网或并网式分布式风力发电中,普通笼型异步电机因价格优势、本体坚固和易实现变速恒频发电的特点,获得市场青睐。

特别是分布式系统中,通常整合多种资源,进行风光互补、风热互补能源开发,本身附带储能系统和电力电子变换器。笼型异步电机与电力电子变换器的优势配合,不仅可以提供励磁,还可以根据控制策略调控多端口(发电端、储能端、用电端)的功率流动,方便实现功率平衡以及自我控制、保护和管理,更可以充分发挥普通笼型异步电机性价比高的优势,从而具有更强的市场竞争力。

我国海岸线长,海上风电资源丰富,国家规划海上风电开采力度增强,为减小线损,高压直流输电系统具有一定优势,定子双绕组笼型异步电机可作为其发电机[12]。 定子双绕组笼型异步电机的结构有如下优点:

1.转子为笼型转子,继承普通笼型异步电机结构简单坚固,维护较少的特点;

2.定子两套绕组相互电隔离,磁耦合,可以方便励磁调速;

3.电机侧的变换器容量为系统额定输出容量的1/3左右;

4.在合适的控制策略下,发电机系统能够在宽转速全负载的工况下输出稳定的直流电压,且具有优良的动静态特性。

如图3所示为南京航空航天大学研究的DWIG风力发电系统相关拓扑。

D W I G系统中,控制绕组侧控制励磁,功率绕组输出整流后的直流电能,适用于高压直流输电系统;系统可以在宽转速下实现风能最大功率追踪,能够有效地利用海上风能丰富、风速较高、无静风期的特点;若进一步将控制侧直流母线与功率侧直流母线通过二极管并联,通过控制策略可提高系统在低风速下的风能利用率。

在海上风力发电高压直流输电系统中,定子双绕组发电系统优良的控制性能、宽转速范围的风能利用率和结实可靠的转子设计有很好的应用前景。

结论

双馈异步电机容易实现变速恒频发电,可以减小电力电子设备的投入,良好的并网优势使其在大型风电基地中应用广泛;普通笼型异步电机坚固可靠,中小功率风力发电中优势较为明显,主要体现在免维护性和经济性,而定子双绕组电机在海上高压直流风力发电系统中优势明显。

我国的新能源政策与发展表明,风力发电正进一步走向大容量大规模海陆资源兼顾开发,异步电机因自身特性将在未来的风能利用中得到更多应用;高性能的异步风力发电系统离不开电力电子变换技术的支撑与发展,应重点开发相关的电力电子变换装置及其控制技术。

参考文献:

[1]易跃春.风力发电现状、发展前景及市场分析[J].国际电力, 8(5):18-22

[2]施鹏飞.全球风力发电现状与发展趋势[J].电网与清洁能源, 24(1):3-5

[3]白建华,辛松旭,贾德香.我国风电大规模开发面临的规划和运行问题分析[J].电力技术经济, 21(2):7-11

[4]Patel M P.风能与太阳能发电系统[M].北京:机械工业出版,2008

[5]程明,张建忠,王念春.可再生能源发电技术[M].北京:机械工业出版社,

[6]姚兴佳,宋俊.风力发电机组原理与应用[M].北京:机械工业出版,2009

[7]吴佳梁,曾赣生,余铁辉.风光互补与储能系统[M].北京:化学工业出版社,

[8]Brune C,Spe R,Wallace A K.Experimental evaluation of a variable-speed, doubly-fed wind-power generation system[C].Industry Applications Society Annual Meeting,1993.Conference Record of the 1993 IEEE

[9]雷亚洲.与风电并网相关的研究课题[J].电力系统自动化,,27(8):84-89

[10]李勇.基于电力电子技术的异步电机发电系统研究[D]. 南京:南京航空航天大学,2008

[11]张兰红,胡育文,黄文新.汽车异步电机集成起动/发电系统研究综述[J].微特电机,,10:69-72

[12]李晓燕,余志.海上风力发电进展[J].太阳能学报,2004, 25(1):78-84

篇15:风力发电环境保护论文

风力发电环境保护论文

1风场道路施工

风电场的道路承载着风机大型设备运输之用,宽一般在6-8米,长度几十公里,无疑是对山区环境破坏最严重的一个项目,特别是植被的破坏和水土流失。一般形成1厘米表土腐殖质层需要200-4时间,因此地表土是难以再生的宝贵资源。在道路修筑前召开专题会,制定具体施工措施,确定剥离厚度,保存和防护方案,回填方案。风场道路表土剥离量大且距离远,易采用“大分散”存放方式。再就是加大对施工队伍环保制度的宣传,增强参建队伍环境保护意识,加大刚性要求。开工时首先把地表土剥离,用推土机推至合适的存放地点,为减少表土运输费用,道路修筑过程中每隔一段选一个表土存放点,道路修筑过后,用机械把道路边坡夯实,再用存放的地表土覆盖,覆土时应适当压实,增加与边坡粘合力,避免顺坡向下滑移。一场雨水过后,地表土中遗留的种子就会发芽,春笋般的长满道路边坡,这样既保护了环境,又减少了水土流失,避免了工程建设对生态环境的破坏,关键是施工过程加强监督,加大对施工队伍的约束机制。

2集电线路施工

35kV集电线路是风场风机至升压站的电力传输线路,铁塔数量在几十到上百之间,分布在整个风电场,表土剥离易采用“小集中”存放方式。一基铁塔基础开挖面一般在十几个平方,且大多在山坡上,如措施不当施工时基坑开挖的地表土会随坡流放,对环境的破坏比较严重。所以施工前一定做好充足准备工作,购置塑料彩条布或薄膜,施工时把剥离的地表土存放在基础旁边的塑料薄膜上,做好防止流失的保护措施。等基础回填合格后,把地表土覆盖在上面压实,除露出的基础柱头外,铁塔下面生长出绿色的植物,这样保护了环境减少水土流失,铁塔和小草相映生辉,关键是加强验收,确保地表土的剥离、存放、覆盖落实到位。

3风机平台施工

风机平台是风机设备的吊装场地,一般在40*50米左右。以50MW风电场为例,单机容量1500kW的风电机组要33台,单机容量kW的风电机组要25台,由于风电机组数量多,占地面积大,分布广,对植被的破坏较严重。山区的地表土一般不足20厘米,很是珍贵,所以风机平台平整时首先确定平台几何尺寸,用推土机把地表土小心剥离,存放在机位旁边的.合适位置,以免影响风机吊装,风机基础回填合格,风机吊装完成后,把存放的地表土覆盖在风机平台,恢复植被,保护环境避免水土流失,让绿色的小草托起银色的风机,关键是加强对施工队伍的过程监管,避免地表熟土和生土混放。

4结束语

在我国大力开发风电,使之成为我国电力工业的一个方面军,不仅是能源开发的需要也是环境保护的需要。风力发电对环境的正面影响是不言而喻的。它不仅可以保护我们人类赖以生存的环境,也可以保护我们土地免受过渡开发的灾难。最可贵的是风电环境的负面影响非常有限。这可以使我们人类与自然界友好相处,真正实现可持续发展。但也不要顾此失彼,在发展风电的同时一定要保护好我们的生存环境,这是每个公民义不容辞的义务和责任,特别是我们的风电建设者们,不要因眼前的利益而忽视环境的保护,要严格遵守国家的法律法规,履行建设项目“环保三同时”制度,借用一句旅游用语送给山区风电建设者们,“风电投运后什么也别留下,只留下绿色”。

作者:姚振华 单位:华电国际项目管理有限公司

篇16:风力发电设备管理论文

1、现如今风力发电设备管理指标

目前,我国的风力发电设备在管理方面还没有形成相对比较完善的体系,在实际的运行中,主要是依据相关的发电设备的评价和规则来进行制定。其中存在的指标类型有很多,包括可利用率、运行系数以及利用系数等等。具体来说主要表现在以下几个方面:

1.1风电机组运行状态

要想对风电机组的运行状况进行深入了解,需要对其运行的实际状态进行分析。

1.2风电设备管理指标

1.2.1单台风电机组可利用率。具体来说,在风电机组可利用率的计算中,要严格按照科学的计算公式来进行,如下所示:单台风电机组的可利用率=可用小时数/统计期间小时数×100%从这一公式中可以看出,单台风电机组的可利用率和可用的时间以及统计期间的时间和经过维修之后的使用寿命之间存在着密切的联系。只有相关的数据进行掌握,然后通过精密地计算,才能够实现风电机组运行的安全性和可靠性。另外,在对其进行检修和维护的过程中,需要对相关的.故障问题进行分析,因为,故障问题的出现会直接影响到风电设备的可用效率,进而对管理指标的建立产生严重的影响。

1.2.2单台机组运行系数。单台机组的运行系数主要是在固定的周期范围内,机组的运行状态和所用时间之间的关系。在对这一参数进行计算的过程中,需要充分考虑到电网系统的整体状态,同时还应该将不通风速作用下的电网系统运行状态考虑到其中。和单台机组的可利用率相比,单台机组的运行系数完全可以反应机组调度情况。

1.2.3单台机组利用系数。这一参数就是指单台机组的发电量在经过折合之后运行的时间,这一系数可以对设备的运行强度进行反应。同时,机组的磨损情况也可以通过这一参数来进行预测。可见,在对风电企业的发电设备进行管理和控制的过程中,对电台机组的利用系数进行计算和预算具有较大的实际作用。

1.2.4单台机组的处理系数。这一系数和单台机组的可以利用率相对,更能够对机组的运行效率和实际的产能情况进行反应。另外,还可以根据风速和风量的大小来进行具体的区别。由于单台机组的的处理系数涉及到机组运行中产生的其他不同的系数,所以具有较大的复杂性。需要工作人员对这一问题加强重视,同时根据已有的系数和运行情况来对不符合机组运行的部分进行细致得调节和改进。充分应用单台机组的处理系数,提升设备管理指标体系的科学性。

1.2.5单台机组非计划停运有关指标。具体来说,从单台机组的分计划停运方面可以看出,主要涉及到的参数类型主要有以下几种:单台机组非计划停运系数、停运效率、发生率等等。从这些参数中可以看出计划停运和非计划停运的具体状态,从而对发电设备管理指标体系的建立提供重要的依据。

2、对现行风力发电设备管理指标的改进及分析

2.1完善风力发电设备管理指标的价值化评价

现行风力发电设备管理指标重实物形态、轻价值形态评价。因此,应该由原来单一的为保证完成生产任务转向为实现企业总的经营目标,由原来以技术指标为主的考核内容转向为技术与经济相结合的考核内容。设备资产保值增值率的计算应考虑设备实际完好率对于期末设备总净值的影响。设备利润率指标数值越大,说明单位设备资金额取得的经济效果越明显,它是企业设备管理工作在保证与推动有效生产情况下对企业经济效益所起综合作用的具体体现。

2.2功效系数法在风力发电设备管理指标体系中的应用

设备管理水平的提升就是寻求最佳平衡点。可以对多指标进行加权综合评判,按照相互矛盾指标的重要程度加权,评价其综合指标值。也可以寻求相互矛盾指标各自的最佳点来评价。

2.2.1评价指标的无量纲处理。首先通过数学变换对设备管理各项评价指标进行无量纲处理。这样做的目的是将各项评价指标的实际值分别转化为可以同度量的设备管理指标分数。只有这样才能把多个异量纲的评价指标综合成一个总评价值。

2.2.2按各评价指标分数及其对应的权重,应用加权几何平均法计算出设备管理指标体系综合分数,然后依据档次标准,对企业设备管理工作作出整体评价。

2.3其他设备管理指标的有益补充

设备现场管理考核指标。反映设备生产现场的维护水平,包括反映生产现场6S活动开展和水平的指标,以及6S活动过程中发现的“6源”问题的解决情况。设备维修管理指标。例如,设备维修成本指标:备件资金周转率、维修费用占生产成本比;设备维修质量指标:设备大修返修率、维修计划的准确率、带缺陷运行机组比率等。

3、结束语

目前风电行业竞争激烈,要保证企业持续稳定的发展,除拥有大量的储备项目、精简的财务制度和科学的管理方法外,更重要的是要提高发电设备的现代化管理水平。其中,以管理指标为主要内容的定量管理是比较有效的手段,以期达到科学、合理和公平的目的。

【风力发电机科技的论文】相关文章:

1.电磁感应发电机说课稿

2.小学生科技论文

3.中国科技论文

4.科技论文书写

5.科技论文写作

6.科技创新论文

7.创新科技论文

8.大学科技论文

9.中学生科技论文

10.科技论文翻译

下载word文档
《风力发电机科技的论文.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部