欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>负压泵工作下泵膜片力学性能综述论文

负压泵工作下泵膜片力学性能综述论文

2022-09-11 08:47:19 收藏本文 下载本文

“dolores”通过精心收集,向本站投稿了2篇负压泵工作下泵膜片力学性能综述论文,以下是小编整理后的负压泵工作下泵膜片力学性能综述论文,欢迎阅读分享,希望对大家有帮助。

负压泵工作下泵膜片力学性能综述论文

篇1:负压泵工作下泵膜片力学性能综述论文

负压泵工作下泵膜片力学性能综述论文

1负压泵工作时相应数学模型

1.1泵容器压强计算数学模型

假定初始状态时进出气口和泵膜片空腔处于标准大气压P0下,且连杆上轴承的轴线与电机回转线重合。设泵膜片与底板所围成的空间为V1,进气口相连的容器容积为V2,假定泵膜片的等效横截面为s,偏心轴的小端圆柱的偏心量为h。根据气体的特性,压强与密度成正比关系,质量一定时,压强与体积的乘积恒定。在从进气口抽气开始到结束的过程中,泵膜片所在空腔内与抽气口空腔内气体的总质量恒定,按照质量守恒定律,计算出第一次抽气后的容器V2、压强P1如下式:(V1+V2+hs)×P1=(V1+V2)×P0。

1.2泵真空度数学模型

真空度的计算可以通过两种方式进行,一种是按照进气口两端压强差;另一种是按照给泵膜片提供的驱动来计算真空度。(1)抽气口的真空度取决于泵膜片体积空间的压强,在泵膜片空间抽气过程中,若该空间体积最大时的压强等于V2内压强时,停止抽气,该状态下即达到真空值。(V1-hs)×P0+V2Pn-1≤(V1+V2+hs)×Pm。(2)根据给泵膜片提供动力的.电机来计算,根据结构特点,泵膜片的运动是通过膜片挡板来传递的,而膜片挡板的运动是通过连杆绕心轴回转实现,所以泵膜片运动由膜片挡板驱动。整个膜片挡板和连杆的运动则由电机提供,很显然,根据力学原理有:Pm×S*×h×K=M×η。式中,S*为泵膜片当量横截面面积,Pm为达到真空度时变动空间的压强,h为偏心量,M为电机输出轴承受的负载,K为与摩擦、密封性阻尼等相关的系数,η为传递效率。考虑到在V2内达到真空值时,V2+hs空间内的压强和V2内一致,否则V2还没有达到稳定的真空度值。因此上式Pm就是真空度值,体现了电机承载能力与真空度之间的关系。从上两种分析真空度值来看,第一种分析方式计算麻烦。即必须要把每一次V2内压强计算出来与V1+hs内的压强做一个比较。这不仅会增加很多的工作量,而且还存在计算误差问题,通过多级迭代后误差会被放大,很可能严重影响到结果的准确性。采用第二种方式计算比较可靠,只需要准确计量膜片挡板的面积与芯轴的偏心量。本产品的泵膜片在实际工作过程中由于存在弹性和塑性的变形,以至于其当量横截面面积无法计算,因此只能通过试验得到其真空度的值。通过对该产品试验考核,得到本批次产品在当前工况下的真空度满足用户指定的指标30kPa。后续仿真计算所使用的真空度都是用该试验值进行。

1.3泵力学本构方程模型

由于泵体除阀膜片和泵膜片外都是各向同性材料,泵膜片和阀膜片属超弹塑性材料,因而属于瞬态动力学计算范畴。由弹塑性力学有限元法,分析在笛卡尔坐标系下的力学平衡方程:[M]{u咬}+[K]{u}={F}。式中,[M]为系统质量矩阵,[K]为系统刚度矩阵,{u咬}为各节点加速度向量,{u}为各节点位移向量,F为载荷向量。由于该负压泵的材料除泵膜片外皆为弹塑性各向同性,它的本构方程在线弹性条件满足下叠加原理,在弹性区内应用经典弹性理论的广义Hooke定律有[1]:

2负压泵物理模型及计算结果

根据上述分析的工作原理,电机给偏心轴A提供旋转速度与一定的力矩,本文关心的是泵膜片在工作时的承载情况,因此只需将电机的输出转速和负载作为负压泵与电机接口处偏心轴的输入即可,要分析的模型如图3所示。泵体工作时体积变化关键在泵膜片(红色)的形状改变,泵膜片的A、B平面被泵膜片压板D和底板B固定,C、D平面固定在泵膜片挡板与连杆E上,随着连杆的运动而运动,进而实现泵膜片和底板之间空腔的体积变化。按照上述分析,在有限元计算强度过程中需将轴承G内部建立动摩擦接触对,对通过紧固件连接的地方设置为绑定接触,以简化过程和降低计算时间。对轴承和连杆的轴承室接触处,由于其处间隙配合公差不到一道,故可以简化计算成绑定接触。对减震垫施加全约束,偏心轴施加电机的输出转速,然后计算出该状态下的泵膜片应力与位移的分布情况。根据实际工作情况,对泵膜片单独分析,对泵膜片的A、B、D共3个面及4个圆孔内表面进行固定,计算其前6阶振型,如图5~图10所示。经试验验证,该泵膜片的前6阶振型与如上仿真振型趋势是一致的,因此模态仿真结果是可信的。当前状况下,初始位置时泵膜片不受到内腔和表面所处的气压差,电机输出端的偏心轴偏心量为3mm,经Workbench仿真计算,得到泵膜片在不考虑腔体内真空度的影响时,该膜片的位移大小分布和应力分布分别如图11与图12所示。在不考虑真空度影响条件下,泵膜片的最大位移为3.0096mm,泵与偏心量3.0mm,因此,从位移角度来分析,变形是合理的,泵膜片的位移比偏心量略大一些(0.01mm),这是由于泵膜片在拉伸压缩后会产生微小的挤压变形且存在一个离心作用,使得泵膜片的位移量略大于偏心量。膜片运动到垂向最大位置时应力分布极值为30.2kPa,处于泵膜片与膜片底板凸台结合处。而泵膜片材质为氟橡胶,其用于压缩空气的橡胶材料能承载不小于60MPa的工作压力,因此,当前工况下膜片承载能力能满足使用。在当前工况条件下,泵膜片的外表面承受一个标准大气压,内表面受到30kPa的真空度压力作用,泵膜片凹槽在气压和拉伸变形共同作用下受到垂直向下的位移为2.8mm,最大应力为0.08MPa。由于泵膜片几何尺寸相对偏心量比较大,泵膜片产生的变形范围很小,几乎处于弹性变形区。因此,当偏心量为最大值3mm时,槽内的最大变形为真空度环境下的位移与偏心时的位移进行矢量叠加。按照等比计算,偏心量为3mm时其最大应力为0.28MPa,其值也远远小于该材料的最大工作压力60MPa。

3结论

通过上述计算结果可知,材料为氟橡胶的泵膜片在偏心量为3mm的偏心轴带动下,使得气体经过单向阀指定空间产生预定的真空度。其泵膜片承受的最大应力为280kPa,弹性足够,不会出现破坏现象,能满足实际工作需求,泵膜片设计尺寸可靠。

篇2:孔隙负压方法下混凝土施工过程中的养护工作的论文

孔隙负压方法下混凝土施工过程中的养护工作的论文

养护是混凝土施工过程中非常重要的工序,对硬化混凝土内部和表面性能、体积稳定性以及抵抗冻融破坏及除冰盐侵蚀的能力,均会产生显着的影响。

养护周期包括最初的浇筑、振捣、饰面直至混凝土达到设计要求性能的时间过程。在混凝土施工过程中,养护通常在浇筑或饰面后进行。普通环境下,由于其水分蒸发速率相对较慢,这种养护程序比较合理,且易于施行。然而,对于现代混凝土(如泵送混凝土、自密实混凝土、高强混凝土等),由于掺加了高效减水剂和活性细掺料,混凝土流动度大,水分容易从表面蒸发,而混凝土的泌水率又较低,蒸发的水分难以得到及时的补充,因此,混凝土非常容易在浇筑以后、终凝以前发生起皮、开裂现象,严重时会影响服役环境下混凝土的耐久性和使用寿命。

对于中国的西北地区,浇筑以后的混凝土多处于大风、光照等严酷水分蒸发环境,若采取传统的单一养护工序,会普遍存在早期开裂问题。

美国混凝土协会《混凝土养护指南》定义了早期养护、中期养护和后期养护3个养护阶段。然而,该指南并未给出养护开始时间的科学判据,仅仅依靠施工现场人工观察,如通过观察泌水光泽来判断泌水及混凝土表层干燥情况,但当水分蒸发速率大于泌水速率时,容易造成误判。

本文介绍了1种基于孔隙负压(PWP)测试的水泥基材料早期养护方法,可以显着提高混凝土在严酷水分蒸发环境条件下的抗裂性和耐久性。理论基础及系统简介。理论基础由水泥、砂、石等材料和水拌制的混凝土,在浇筑以后直到终凝以前的早期养护阶段,暴露于自然环境中,会发生以下变化:(1)由塑性介质(流体)向弹塑性介质(固体)转变;(2)内部的水分蒸发由平面水(自由水)向曲面水(毛细水)转变。

在早期养护阶段,混凝土中的水分向表层迁移(泌水),而表层的水分逐渐蒸发(干燥)。当泌水速率大于水分的蒸发速率时(见图1(a)),混凝土表层的水分仍然处于平面水状态,就像水池中的水,这时的水分蒸发不会在表层引起孔隙负压。当泌水速率小于水分的蒸发速率时(见图1(b)),混凝土表层的泌水消失,这时水分的蒸发将在其表层导致孔隙负压,而孔隙负压的增长被普遍认为是引起塑性裂缝的微观驱动力。一旦孔隙负压增长到一定程度,会使宏观收缩应力超过混凝土表层的抗拉强度,从而引发开裂。

因此,实时监测混凝土表层孔隙负压的变化,并将其控制在一定的范围,可有效控制塑性裂缝的发生。另一方面,过早实施早期养护不仅没有必要,而且还会损害表层混凝土的性能。所以监测孔隙负压的.产生,可以避免过早的早期养护。孔隙负压的测试原理孔隙负压自动测试系统由陶瓷头、腔体、集气室、计算机采集系统等部件组成。

陶瓷头是仪器的感应部件,具有许多微小的孔隙,被水浸润后,在孔隙中形成一层水膜,当孔隙全部充水后,表面张力使水通过陶瓷头。将充满水且密封的陶瓷头插入水泥砂浆,陶瓷头中的水膜与水泥砂浆中的水分连接,以达到最初的平衡。

当泌水速率小于水分的蒸发速率时,水泥砂浆表层水分呈不饱和状态(即干燥开始),与仪器中的水势不相等,水便由水势高处通过陶瓷头向水势低处流动,直至两个系统的水势平衡为止。因为仪器是密封的,在仪器中便产生真空度或吸力,这就是水泥砂浆的孔隙负压。孔隙负压的产生意味着水泥砂浆干燥开始。

本文采用的孔隙负压测试设备由传感器、孔隙负压数据采集仪、GSM信号接收中心和计算机处理系统构成,其中陶瓷头的内径为2mm,外径为6mm.

【负压泵工作下泵膜片力学性能综述论文】相关文章:

1.浅谈泵送混凝土配合比的设计论文

2.创业教育背景下校园电子商务实践工作探索论文

3.浅谈示范性院校建设背景下高职教师工作满意度研究论文

下载word文档
《负压泵工作下泵膜片力学性能综述论文.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

负压泵工作下泵膜片力学性能综述论文相关文章
最新推荐
猜你喜欢
  • 返回顶部